1. Cartesian Product of Sets.

Cartesian product of sets:Let A and B be any two non-empty sets. The set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$ is called the Cartesian product of the sets A and B and is denoted by $A \times B$. Thus, $A \times B = [(a, b): a \in A$ and $b \in B]$ If $A = \phi$ or $B = \phi$, then we define $A \times B = \phi$. Example: Let $A = \{a, b, c\}$ and $B = \{p, q\}$. Then $A \times B = \{(a, p), (a, q), (b, p), (b, q), (c, p), (c, q)\}$ Also $B \times A = \{(p, a), (p, b), (p, c), (q, a), (q, b), (q, c)\}$

Important theorems on Cartesian product of sets:

Theorem 1:For any three sets A, B, C (i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ (ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Theorem 2: For any three sets A, B, C $A \times (B - C) = (A \times B) - (A \times C)$

Theorem 3: If A and B are any two non-empty sets, then

 $\mathsf{A}\times\mathsf{B}=\mathsf{B}\times\mathsf{A}\Leftrightarrow\mathsf{A}=\mathsf{B}$

Theorem 4:If $A \subseteq B$, then $A \times A \subseteq (A \times B) \cap (B \times A)$

Theorem 5:If $A \subseteq B$, then $A \times C \subseteq B \times C$ for any set C.

Theorem 6:If $A \subseteq B$ and $C \subseteq D$, then $A \times C \subseteq B \times D$

Theorem 7:For any sets A, B, C, D $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$

Theorem 8:For any three sets A, B, C

 $\mathsf{A} \times (\mathsf{B}' \cup \mathsf{C}')' = (\mathsf{A} \times \mathsf{B}) \cap (\mathsf{A} \times \mathsf{C})$

(ii) $A \times (B' \cap C')' = (A \times B) \cup (A \times C)$

Theorem 9:Let A and B two non-empty sets having n elements in common, then $A \times B$ and $B \times A$ have n^2 elements in common.

www.testprepkart.com
info@testprepkart.com
+91 - 8800 1234 92

1