## 1. Cartesian Product of Sets.

Cartesian product of sets:Let $A$ and $B$ be any two non-empty sets. The set of all ordered pairs ( $a, b$ ) such that $a \in A$ and $b \in B$ is called the Cartesian product of the sets $A$ and $B$ and is denoted by $A \times B$. Thus, $A \times B=[(a, b): a \in A$ and $b \in B]$
If $A=\phi$ or $B=\phi$, then we define $A \times B=\phi$.
Example: Let $A=\{a, b, c\}$ and $B=\{p, q\}$.
Then $A \times B=\{(a, p),(a, q),(b, p),(b, q),(c, p),(c, q)\}$
Also $B \times A=\{(p, a),(p, b),(p, c),(q, a),(q, b),(q, c)\}$

## Important theorems on Cartesian product of sets:

Theorem 1:For any three sets $A, B, C$
(i) $A \times(B \cup C)=(A \times B) \cup(A \times C) \quad$ (ii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$

Theorem 2: For any three sets $A, B, C$

$$
A \times(B-C)=(A \times B)-(A \times C)
$$

Theorem 3:If $A$ and $B$ are any two non-empty sets, then

$$
A \times B=B \times A \Leftrightarrow A=B
$$

Theorem 4:If $A \subseteq B$, then $A \times A \subseteq(A \times B) \cap(B \times A)$

Theorem 5:If $A \subseteq B$, then $A \times C \subseteq B \times C$ for any set $C$.

Theorem 6:If $A \subseteq B$ and $C \subseteq D$, then $A \times C \subseteq B \times D$

Theorem 7:For any sets $A, B, C, D$

$$
(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)
$$

Theorem 8:For any three sets $A, B, C$
$A \times\left(B^{\prime} \cup C^{\prime}\right)^{\prime}=(A \times B) \cap(A \times C)$

## Testprep Kart

(ii) $A \times\left(B^{\prime} \cap C^{\prime}\right)^{\prime}=(A \times B) \cup(A \times C)$

Theorem 9:Let $A$ and $B$ two non-empty sets having $n$ elements in common, then $A \times B$ and $B \times A$ have $n^{2}$ elements in common.

www.testprepkart.com
10 info@testprepkart.com

