Vector or Cross product of Two Vectors.

Let \mathbf{a}, \mathbf{b} be two non-zero, non-parallel vectors. Then the vector product $\mathbf{a} \times \mathbf{b}$, in that order, is defined as a vector whose magnitude is $|\mathbf{a} \| \mathbf{b}| \sin \theta$ where θ is the angle between \mathbf{a} and \mathbf{b} whose direction is perpendicular to the plane of \mathbf{a} and \mathbf{b} in such a way that \mathbf{a}, \mathbf{b} and this direction constitute a right handed system. In other words, $\mathbf{a} \times \mathbf{b} \neq \mathbf{a} \| \mathbf{b} \mid \sin \theta \hat{\boldsymbol{\eta}}$ where θ is the angle between \mathbf{a} and \mathbf{b}, $\hat{\boldsymbol{\eta}}$ is a unit vector perpendicular to the plane of \mathbf{a} and \mathbf{b} such that $\mathbf{a}, \mathbf{b}, \hat{\boldsymbol{\eta}}$
 form a right handed system.
(1) Geometrical interpretation of vector product:

If \mathbf{a}, \mathbf{b} be two non-zero, non-parallel vectors represented by $\overrightarrow{O A}$ and $\overrightarrow{O B}$ respectively and let θ be the angle between them. Complete the parallelogram $O A C B$. Draw $B L \perp O A$.
In $\triangle O B L, \sin \theta=\frac{B L}{O B} \Rightarrow B L=O B \sin \theta=|\mathbf{b}| \sin \theta$
Now, $\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \hat{\boldsymbol{\eta}}=(O A)(B L) \hat{\boldsymbol{\eta}}$
$=($ Base \times Height $) \hat{\boldsymbol{\eta}}=($ area of paralle logram $O A C B) \hat{\boldsymbol{\eta}}$
$=$ Vector area of the parallelogram $O A C B$

Thus, $\mathbf{a} \times \mathbf{b}$ is a vector whose magnitude is equal to the area of the parallelogram having \mathbf{a} and b as its adjacent sides and whose direction $\hat{\boldsymbol{\eta}}$ is perpendicular to the plane of a and \mathbf{b} such that $\mathbf{a}, \mathbf{b}, \hat{\boldsymbol{\eta}}$ form a right handed system. Hence $\mathbf{a} \times \mathbf{b}$ represents the vector area of the parallelogram having adjacent sides along \mathbf{a} and \mathbf{b}.

Thus, area of parallelogram $O A C B=|\mathbf{a} \times \mathbf{b}|$.
Also, area of $\triangle O A B=\frac{1}{2}$ area of parallelogram $O A C B=\frac{1}{2}|\mathbf{a} \times \mathbf{b}|=\frac{1}{2}|\overrightarrow{O A} \times \overrightarrow{O B}|$

(2) Properties of vector product

(i) Vector product is not commutative i.e., if \mathbf{a} and \mathbf{b} are any two vectors, then $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$, however, $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
(ii) If \mathbf{a}, \mathbf{b} are two vectors and m is a scalar, then $m \mathbf{a} \times \mathbf{b}=m(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times m \mathbf{b}$
(iii) If \mathbf{a}, \mathbf{b} are two vectors and m, n are scalars, then $m \mathbf{a} \times n \mathbf{b}=m n(\mathbf{a} \times \mathbf{b})=m(\mathbf{a} \times n \mathbf{b})=n(m \mathbf{a} \times \mathbf{b})$
(iv) Distributivity of vector product over vector addition.

Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be any three vectors. Then
(a) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c} \quad$ (Left distributivity)
(b) $(\mathbf{b}+\mathbf{c}) \times \mathbf{a}=\mathbf{b} \times \mathbf{a}+\mathbf{c} \times \mathbf{a}$
(Right distributivity)
(v) For any three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ we have $\mathbf{a} \times(\mathbf{b}-\mathbf{c})=\mathbf{a} \times \mathbf{b}-\mathbf{a} \times \mathbf{c}$
(vi) The vector product of two non-zero vectors is zero vector iff they are parallel (Collinear) i.e., $\mathbf{a} \times \mathbf{b}=\mathbf{0} \Leftrightarrow \mathbf{a} \| \mathbf{b}, \mathbf{a}, \mathbf{b}$ are non-zero vectors.

It follows from the above property that $\mathbf{a} \times \mathbf{a}=\mathbf{0}$ for every non-zero vector \mathbf{a}, which in turn implies that $\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0}$
(vii) Vector product of orthonormal triad of unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ using the definition of the vector product, we obtain $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{j} \times \mathbf{k}=\mathbf{i}, \mathbf{k} \times \mathbf{i}=\mathbf{j}, \mathbf{j} \times \mathbf{i}=-\mathbf{k}, \mathbf{k} \times \mathbf{j}=-\mathbf{i}, \mathbf{i} \times \mathbf{k}=-\mathbf{j}$
(viii) Lagrange's identity: If \mathbf{a}, \mathbf{b} are any two vector then $|\mathbf{a} \times \mathbf{b}|^{2} \neq\left.\left.\mathbf{a}\right|^{2} \mathbf{b}\right|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}$ or $|\mathbf{a} \times \mathbf{b}|^{2}+(\mathbf{a} . \mathbf{b})^{2} \neq\left.\mathbf{a}\right|^{2}|\mathbf{b}|^{2}$
(3) Vector product in terms of components:If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$.

Then, $\mathbf{a} \times \mathbf{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$.
(4) Angle between two vectors: If θ is the angle between \mathbf{a} and \mathbf{b}, then $\sin \theta=\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a} \| \mathbf{b}|}$

Expression for $\sin \theta$: If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ and θ be angle between \mathbf{a} and b, then
$\sin ^{2} \theta=\frac{\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{1} b_{3}-a_{3} b_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)}$
(5) (i) Right handed system of vectors: Three mutually perpendicular vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ form a
right handed system of vector iff $\mathbf{a} \times \mathbf{b}=\mathbf{c}, \mathbf{b} \times \mathbf{c}=\mathbf{a}, \mathbf{c} \times \mathbf{a}=\mathbf{b}$
Example: The unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ form a right-handed system,
$\mathbf{i} \times \mathbf{j}=\mathbf{k}, \mathbf{j} \times \mathbf{k}=\mathbf{i}, \mathbf{k} \times \mathbf{i}=\mathbf{j}$

(ii) Left handed system of vectors: The vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, mutually perpendicular to one another form a left handed system of vector iff $\mathbf{c} \times \mathbf{b}=\mathbf{a}, \mathbf{a} \times \mathbf{c}=\mathbf{b}, \mathbf{b} \times \mathbf{a}=\mathbf{c}$

(6) Vector normal to the plane of two given vectors: If \mathbf{a}, \mathbf{b} be two non-zero, nonparallel vectors and let θ be the angle between them. $\mathbf{a} \times \mathbf{b} \neq \mathbf{a} \| \mathbf{b} \mid \sin \theta \hat{\boldsymbol{\eta}}$ Where $\hat{\boldsymbol{\eta}}$ is a unit vector \perp to the plane of \mathbf{a} and \mathbf{b} such that $\mathbf{a}, \mathbf{b}, \boldsymbol{\eta}$ from a right-handed system.
$\Rightarrow(\mathbf{a} \times \mathbf{b}) \neq \mathbf{a} \times \mathbf{b} \left\lvert\, \hat{\boldsymbol{\eta}} \Rightarrow \hat{\boldsymbol{\eta}}=\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}\right.$
Thus, $\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}$ is a unit vector \perp to the plane of \mathbf{a} and \mathbf{b}. Note that $-\frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}$ is also a unit vector $\perp \quad$ to the plane of \mathbf{a} and \mathbf{b}. Vectors of magnitude ' λ ' normal to the plane of \mathbf{a} and \mathbf{b} are given by $\pm \frac{\lambda(\mathbf{a} \times \mathbf{b})}{|\mathbf{a} \times \mathbf{b}|}$.

