Vector or Cross product of Two Vectors.

Let \mathbf{a}, \mathbf{b} be two non-zero, non-parallel vectors. Then the vector product $\mathbf{a} \times \mathbf{b}$, in that order, is

defined as a vector whose magnitude is $|\mathbf{a}||\mathbf{b}| \sin\theta$ where θ is the angle between \mathbf{a} and \mathbf{b} whose direction is perpendicular to the plane of \mathbf{a} and \mathbf{b} in such a way that \mathbf{a}, \mathbf{b} and this direction constitute a right handed system. In other words, $\mathbf{a} \times \mathbf{b} = |\mathbf{a}|||\mathbf{b}||\sin\theta\hat{\eta}$ where θ is the angle between \mathbf{a} and \mathbf{b} , $\hat{\eta}$ is a unit vector perpendicular to the plane of \mathbf{a} and \mathbf{b} such that $\mathbf{a}, \mathbf{b}, \hat{\eta}$ form a right handed system.

(1) Geometrical interpretation of vector product:

If **a**, **b** be two non-zero, non-parallel

vectors represented by \overrightarrow{OA} and \overrightarrow{OB} respectively and let θ be the angle between them. Complete the parallelogram OACB. Draw $BL \perp OA$.

In
$$\triangle OBL$$
, $\sin\theta = \frac{BL}{OB} \Rightarrow BL = OB \sin\theta = |\mathbf{b}| \sin\theta$ (i)
Now, $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin\theta \hat{\mathbf{\eta}} = (OA)(BL)\hat{\mathbf{\eta}}$

= (Base × Height) $\hat{\eta}$ = (area of paralle logram *OACB*) $\hat{\eta}$

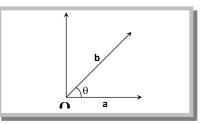
= Vector area of the parallelogram OACB

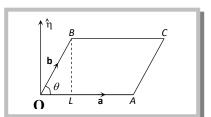
Thus, $\mathbf{a} \times \mathbf{b}$ is a vector whose magnitude is equal to the area of the parallelogram having \mathbf{a} and \mathbf{b} as its adjacent sides and whose direction $\hat{\mathbf{\eta}}$ is perpendicular to the plane of \mathbf{a} and \mathbf{b} such that $\mathbf{a}, \mathbf{b}, \hat{\mathbf{\eta}}$ form a right handed system. Hence $\mathbf{a} \times \mathbf{b}$ represents the vector area of the parallelogram having adjacent sides along \mathbf{a} and \mathbf{b} .

Thus, area of parallelogram $OACB = |\mathbf{a} \times \mathbf{b}|$. Also, area of $\Delta OAB = \frac{1}{2}$ area of parallelogram $OACB = \frac{1}{2}|\mathbf{a} \times \mathbf{b}| = \frac{1}{2}|\overrightarrow{OA} \times \overrightarrow{OB}|$

(2) Properties of vector product

(i) Vector product is not commutative *i.e.*, if **a** and **b** are any two vectors, then $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a}$, however, $\mathbf{a} \times \mathbf{b} = -(\mathbf{b} \times \mathbf{a})$





(ii) If \mathbf{a}, \mathbf{b} are two vectors and *m* is a scalar, then $m\mathbf{a} \times \mathbf{b} = m(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times m\mathbf{b}$

(iii) If **a**, **b** are two vectors and *m*, *n* are scalars, then $m\mathbf{a} \times n\mathbf{b} = mn(\mathbf{a} \times \mathbf{b}) = m(\mathbf{a} \times n\mathbf{b}) = n(m\mathbf{a} \times \mathbf{b})$

(iv) Distributivity of vector product over vector addition.
Let a, b, c be any three vectors. Then
(a) a × (b + c) = a × b + a × c (Left distributivity)
(b) (b + c) × a = b × a + c × a (Right distributivity)

(v) For any three vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ we have $\mathbf{a} \times (\mathbf{b} - \mathbf{c}) = \mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}$

(vi) The vector product of two non-zero vectors is zero vector *iff* they are parallel (Collinear) *i.e.*, $\mathbf{a} \times \mathbf{b} = \mathbf{0} \Leftrightarrow \mathbf{a} \parallel \mathbf{b}, \mathbf{a}, \mathbf{b}$ are non-zero vectors.

It follows from the above property that $\mathbf{a} \times \mathbf{a} = \mathbf{0}$ for every non-zero vector \mathbf{a} , which in turn implies that $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$

(vii) Vector product of orthonormal triad of unit vectors **i**, **j**, **k** using the definition of the vector product, we obtain $\mathbf{i} \times \mathbf{j} = \mathbf{k}, \mathbf{j} \times \mathbf{k} = \mathbf{i}, \mathbf{k} \times \mathbf{i} = \mathbf{j}$, $\mathbf{j} \times \mathbf{i} = -\mathbf{k}, \mathbf{k} \times \mathbf{j} = -\mathbf{i}, \mathbf{i} \times \mathbf{k} = -\mathbf{j}$

(viii) Lagrange's identity: If **a**, **b** are any two vector then $|\mathbf{a} \times \mathbf{b}|^2 \neq |\mathbf{a}|^2 |\mathbf{b}|^2 - (\mathbf{a} \cdot \mathbf{b})^2$ or $|\mathbf{a} \times \mathbf{b}|^2 + (\mathbf{a} \cdot \mathbf{b})^2 \neq |\mathbf{a}|^2 |\mathbf{b}|^2$

(3) Vector product in terms of components: If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$.

Then, $\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$.

(4) **Angle between two vectors:** If θ is the angle between **a** and **b**, then $\sin \theta = \frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}||\mathbf{b}|}$

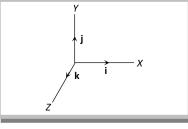
Expression for $\sin \theta$: If $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$, $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ and θ be angle between \mathbf{a} and \mathbf{b} , then

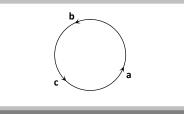
$$\sin^2 \theta = \frac{(a_2b_3 - a_3b_2)^2 + (a_1b_3 - a_3b_1)^2 + (a_1b_2 - a_2b_1)^2}{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}$$

(5) (i) **Right handed system of vectors:** Three mutually perpendicular vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ form a right handed system of vector *iff* $\mathbf{a} \times \mathbf{b} = \mathbf{c}$, $\mathbf{b} \times \mathbf{c} = \mathbf{a}$, $\mathbf{c} \times \mathbf{a} = \mathbf{b}$

Example: The unit vectors **i**, **j**, **k** form a right-handed system,

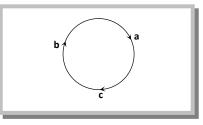
 $\mathbf{i} \times \mathbf{j} = \mathbf{k}, \mathbf{j} \times \mathbf{k} = \mathbf{i}, \mathbf{k} \times \mathbf{i} = \mathbf{j}$





(ii) **Left handed system of vectors**: The vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, mutually perpendicular to one another form a left handed system of vector *iff*

 $\mathbf{c} \times \mathbf{b} = \mathbf{a}, \mathbf{a} \times \mathbf{c} = \mathbf{b}, \mathbf{b} \times \mathbf{a} = \mathbf{c}$



(6) Vector normal to the plane of two given vectors: If \mathbf{a}, \mathbf{b} be two non-zero, nonparallel vectors and let θ be the angle between them. $\mathbf{a} \times \mathbf{b} \neq \mathbf{a} \parallel \mathbf{b} \parallel \sin \theta \hat{\eta}$ Where $\hat{\eta}$ is a unit vector \bot to the plane of \mathbf{a} and \mathbf{b} such that $\mathbf{a}, \mathbf{b}, \eta$ from a right-handed system.

$$\Rightarrow (\mathbf{a} \times \mathbf{b}) \neq \mathbf{a} \times \mathbf{b} \mid \hat{\mathbf{\eta}} \Rightarrow \hat{\mathbf{\eta}} = \frac{\mathbf{a} \times \mathbf{b}}{\mid \mathbf{a} \times \mathbf{b} \mid}$$

Thus, $\frac{\mathbf{a} \times \mathbf{b}}{\mid \mathbf{a} \times \mathbf{b} \mid}$ is a unit vector \perp to the plane of \mathbf{a} and \mathbf{b} . Note that $-\frac{\mathbf{a} \times \mathbf{b}}{\mid \mathbf{a} \times \mathbf{b} \mid}$ is also a unit vector \perp to the plane of \mathbf{a} and \mathbf{b} . Vectors of magnitude ' λ ' normal to the plane of \mathbf{a} and \mathbf{b} are given by $\pm \frac{\lambda(\mathbf{a} \times \mathbf{b})}{\mid \mathbf{a} \times \mathbf{b} \mid}$.