Types of Vector.

(1) Zero or null vector:A vector whose magnitude is zero is called zero or null vector and it is represented by \vec{O}.
The initial and terminal points of the directed line segment representing zero vector are coincident and its direction is arbitrary.
(2) Unit vector:A vector whose modulus is unity, is called a unit vector. The unit vector in the direction of a vector a is denoted by $\hat{\mathbf{a}}$, read as "a cap". Thus, $|\hat{\mathbf{a}}|=1$.
$\hat{\mathbf{a}}=\frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\text { Vector } a}{\text { Magnitude of } a}$

Note: Unit vectors parallel to \mathbf{x}-axis, y -axis and z -axis are denoted by \mathbf{i}, \mathbf{j} and \mathbf{k} respectively.
Two unit vectors may not be equal unless they have the same direction.
(3) Like and unlike vectors: Vectors are said to be like when they have the same sense of direction and unlike when they have opposite directions.
(4) Collinear or parallel vectors: Vectors having the same or parallel supports are called collinear vectors.
(5) Co-initial vectors: Vectors having the same initial point are called co-initial vectors.
(6) Co-planar vectors: A system of vectors is said to be coplanar, if their supports are parallel to the same plane.

Note: Two vectors having the same initial point are always coplanar but such three or more vectors may or may not be coplanar.
(7) Coterminous vectors: Vectors having the same terminal point are called coterminous vectors.
(8) Negative of a vector: The vector which has the same magnitude as the vector a but opposite direction, is called the negative of \mathbf{a} and is denoted by $-\mathbf{a}$. Thus, if $\overrightarrow{P Q}=\mathbf{a}$, then $\overrightarrow{Q P}=-\mathbf{a}$.
(9) Reciprocal of a vector: A vector having the same direction as that of a given vector a but magnitude equal to the reciprocal of the given vector is known as the reciprocal of a and is denoted by \mathbf{a}^{-1}. Thus, if $|\mathbf{a}|=a,\left|\mathbf{a}^{-1}\right|=\frac{1}{a}$

Note: A unit vector is self-reciprocal.
(10) Localized and free vectors:A vector which is drawn parallel to a given vector through a specified point in space is called a localized vector. For example, a force acting on a rigid body is a localized vector as its effect depends on the line of action of the force. If the value of a vector depends only on its length and direction and is independent of its position in the space, it is called a free vector.
(11) Position vectors:The vector $\overrightarrow{O A}$ which represents the position of the point A with respect to a fixed point O (called origin) is called position vector of the point A. If (x, y, z) are co-ordinates of the point A, then $\overrightarrow{O A}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.
(12) Equality of vectors:Two vectors \mathbf{a} and \mathbf{b} are said to be equal, if
(i) $|\mathbf{a}|=\mathbf{b} \mid$
(ii) They have the same or parallel support and
(iii) The same sense.

