Rectangular resolution of a Vector in Two and Three dimensional systems.

(1) Any vector \mathbf{r} can be expressed as a linear combination of two unit vectors \mathbf{i} and \mathbf{j} at right angle *i.e.*, $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$

The vector $x\mathbf{i}$ and $y\mathbf{j}$ are called the perpendicular component vectors of \mathbf{r} . The scalars x and y are called the components or resolved parts of \mathbf{r} in the directions of x-axis and y-axis respectively and the ordered pair (x, y) is known as co-ordinates of point whose position vector is \mathbf{r} .

Also the magnitude of $\mathbf{r} = \sqrt{x^2 + y^2}$ and if θ be the inclination of \mathbf{r} with the *x*-axis, then $\theta = \tan^{-1}(y/x)$

(2) If the coordinates of *P* are (*x*, *y*, *z*)then the position vector of **r** can be written as $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$.

The vectors $x\mathbf{i}, y\mathbf{j}$ and $z\mathbf{k}$ are called the right angled components of \mathbf{r} .

The scalars x, y, z are called the components or resolved parts of **r** in the directions of *x*-axis, *y*-axis and *z*-axis respectively and ordered triplet (*x*, *y*, *z*) is known as coordinates of *P* whose position vector is **r**.

Also the magnitude or modulus of $\mathbf{r} \neq \mathbf{r} |= \sqrt{x^2 + y^2 + z^2}$

Direction cosines of **r** are the cosines of angles that the vector **r** makes with the positive direction of *x*, *y* and *z*-axes. $\cos \alpha = l = \frac{x}{\sqrt{x^2 + y^2 + z^2}} = \frac{x}{|\mathbf{r}|}$, $\cos \beta = m = \frac{y}{\sqrt{x^2 + y^2 + z^2}} = \frac{y}{|\mathbf{r}|}$ and $\cos \gamma = n = \frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{z}{|\mathbf{r}|}$

Clearly, $l^2 + m^2 + n^2 = 1$. Here $\alpha = \angle POX$, $\beta = \angle POY$ $\gamma = \angle POZ$ and **i**, **j**, **k** are the unit vectors along *OX*, *OY*, *OZ* respectively.