Rectangular resolution of a Vector in Two and Three dimensional systems.

(1) Any vector \mathbf{r} can be expressed as a linear combination of two unit vectors \mathbf{i} and \mathbf{j} at right angle i.e., $\mathbf{r}=x \mathbf{i}+y \mathbf{j}$

The vector $x \mathbf{i}$ and $y \mathbf{j}$ are called the perpendicular component vectors of \mathbf{r}. The scalars x and y are called the components or resolved parts of \mathbf{r} in the directions of x-axis and y-axis respectively and the ordered pair (x, y) is known as co-ordinates of point whose position vector is \mathbf{r}.

Also the magnitude of $\mathbf{r}=\sqrt{x^{2}+y^{2}}$ and if θ be the inclination of \mathbf{r} with the
 x-axis, then $\theta=\tan ^{-1}(y / x)$
(2) If the coordinates of P are (x, y, z) then the position vector of \mathbf{r} can be written as $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$.

The vectors $x \mathbf{i}, y \mathbf{j}$ and $z \mathbf{k}$ are called the right angled components of \mathbf{r}.
The scalars x, y, z are called the components or resolved parts of \mathbf{r} in the directions of x-axis, y axis and z-axis respectively and ordered triplet (x, y, z) is known as coordinates of P whose position vector is \mathbf{r}.

Also the magnitude or modulus of $\mathbf{r} \neq \mathbf{r} \mid=\sqrt{x^{2}+y^{2}+z^{2}}$
Direction cosines of \mathbf{r} are the cosines of angles that the vector \mathbf{r} makes with the positive direction of x, y and z-axes. $\cos \alpha=l=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{|\mathbf{r}|}$, $\cos \beta=m=\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{y}{|\mathbf{r}|}$ and $\cos \gamma=n=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{z}{|\mathbf{r}|}$

Clearly, $l^{2}+m^{2}+n^{2}=1$. Here $\alpha=\angle P O X, \beta=\angle P O Y \quad \gamma=\angle P O Z$ and $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the unit vectors along $O X, O Y, O Z$ respectively.

