Position Vector.

If a point O is fixed as the origin in space (or plane) and P is any point, then $\overrightarrow{O P}$ is called the position vector of P with respect to O.
If we say that P is the point \mathbf{r}, then we mean that the position vector of P is \mathbf{r} with respect to some origin O.

(1) $\overrightarrow{\boldsymbol{A B}}$ in terms of the position vectors of points \boldsymbol{A} and \boldsymbol{B} : If \mathbf{a} and \mathbf{b} are position vectors of points A and B respectively. Then, $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}$
In $\triangle O A B$, we have $\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O B} \Rightarrow \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\mathbf{b}-\mathbf{a}$
$\Rightarrow \overrightarrow{A B}=$ (Position vector of $B)-($ Position vector of $A)$
$\Rightarrow \overrightarrow{A B}=$ (Position vector of head) - (Position vector of tail)

(2) Position vector of a dividing point

(i) Internal division: Let A and B be two points with position vectors a and \mathbf{b} respectively, and let C be a point dividing $A B$ internally in the ratio $m: n$.
Then the position vector of C is given by
$\overrightarrow{O C}=\frac{m \mathbf{b}+n \mathbf{a}}{m+n}$

(ii) External division: Let A and B be two points with position vectors \mathbf{a} and \mathbf{b} respectively and let C be a point dividing $A B$ externally in the ratio $m: n$.
Then the position vector of C is given by
$\overrightarrow{O C}=\frac{m \mathbf{b}-n \mathbf{a}}{m-n}$

Important Tips

- Position vector of the mid point of $A B$ is $\frac{\mathbf{a}+\mathbf{b}}{2}$
- If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are position vectors of vertices of a triangle, then position vector of its centroid is $\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3}$
- If $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ are position vectors of vertices of a tetrahedron, then position vector of its centroid is $\frac{\mathbf{a + b + \mathbf { c } + \mathbf { d }}}{4}$.

