Linear Combination of Vectors.

A vector \mathbf{r} is said to be a linear combination of vectors $\mathbf{a}, \mathbf{b}, \mathbf{c} \ldots$. . etc, if there exist scalars x, y, z etc., such that $\mathbf{r}=x \mathbf{a}+y \mathbf{b}+z \mathbf{c}+\ldots$.
Examples. Vectors $\mathbf{r}_{1}=2 \mathbf{a}+\mathbf{b}+3 \mathbf{c}, \mathbf{r}_{2}=\mathbf{a}+3 \mathbf{b}+\sqrt{2} \mathbf{c}$ are linear combinations of the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
(1) Collinear and Non-collinear vectors:Let \mathbf{a} and \mathbf{b} be two collinear vectors and let \mathbf{x} be the unit vector in the direction of \mathbf{a}. Then the unit vector in the direction of \mathbf{b} is \mathbf{x} or $-\mathbf{x}$
according as \mathbf{a} and \mathbf{b} are like or unlike parallel vectors. Now, $\mathbf{a} \neq \mathbf{a} \mid \hat{\mathbf{x}}$ and $\mathbf{b}= \pm|\mathbf{b}| \hat{\mathbf{x}}$.
$\therefore \mathbf{a}=\left(\frac{|\mathbf{a}|}{|\mathbf{b}|}\right)|\mathbf{b}| \hat{\mathbf{x}} \Rightarrow \mathbf{a}=\left(\pm \frac{|\mathbf{a}|}{|\mathbf{b}|}\right) \mathbf{b} \Rightarrow \mathbf{a}=\lambda \mathbf{b}$, where $\lambda= \pm \frac{|\mathbf{a}|}{|\mathbf{b}|}$.
Thus, if \mathbf{a}, \mathbf{b} are collinear vectors, then $\mathbf{a}=\lambda \mathbf{b}$ or $\mathbf{b}=\lambda \mathbf{a}$ for some scalar λ.

(2) Relation between two parallel vectors

(i) If \mathbf{a} and \mathbf{b} be two parallel vectors, then there exists a scalar k such that $\mathbf{a}=k \mathbf{b}$.
i.e., there exist two non-zero scalar quantities x and y so that $x \mathbf{a}+y \mathbf{b}=\mathbf{0}$.

If \mathbf{a} and \mathbf{b} be two non-zero, non-parallel vectors then $x \mathbf{a}+y \mathbf{b}=\mathbf{0} \Rightarrow x=0$ and $y=0$.
Obviously $x \mathbf{a}+y \mathbf{b}=\mathbf{0} \Rightarrow\left\{\begin{array}{c}\mathbf{a}=\mathbf{0}, \mathbf{b}=\mathbf{0} \\ \text { or } \\ x=0, y=0 \\ \text { or } \\ \mathbf{a} \| \mathbf{b}\end{array}\right.$
(ii) If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ then from the property of parallel vectors, we have
$\mathbf{a} \| \mathbf{b} \Rightarrow \frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}=\frac{a_{3}}{b_{3}}$
(3) Test of collinearity of three points:Three points with position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are collinear iff there exist scalars x, y, z not all zero such that $x \mathbf{a}+y \mathbf{b}+z \mathbf{c}=\mathbf{0}$, where $x+y+z=0$. If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}, \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}$ and $\mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}$, then the points with position vector $\mathbf{a}, \mathbf{b}, \mathbf{c}$ will be collinear iff $\left|\begin{array}{lll}a_{1} & a_{2} & 1 \\ b_{1} & b_{2} & 1 \\ c_{1} & c_{2} & 1\end{array}\right|=0$.
(4) Test of coplanarity of three vectors: Let \mathbf{a} and \mathbf{b} two given non-zero non-collinear vectors. Then any vectors \mathbf{r} coplanar with \mathbf{a} and \mathbf{b} can be uniquely expressed as $\mathbf{r}=x \mathbf{a}+y \mathbf{b}$ for some scalars x and y.
(5) Test of coplanarity of Four points: Four points with position vectors a,b,c,d are coplanar iff there exist scalars x, y, z, u not all zero such that $x \mathbf{a}+y \mathbf{b}+z \mathbf{c}+u \mathbf{d}=\mathbf{0}$, where $x+y+z+u=0$.

Four points with position vectors
$\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \quad \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}, \mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}, \mathbf{d}=d_{1} \mathbf{i}+d_{2} \mathbf{j}+d_{3} \mathbf{k}$
will be coplanar, iff $\left|\begin{array}{llll}a_{1} & a_{2} & a_{3} & 1 \\ b_{1} & b_{2} & b_{3} & 1 \\ c_{1} & c_{2} & c_{3} & 1 \\ d_{1} & d_{2} & d_{3} & 1\end{array}\right|=0$

