Linear Independence and Dependence of Vectors.

(1) Linearly independent vectors:A set of non-zero vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \ldots \mathbf{a}_{n}$ is said to be linearly independent, if $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots . .+x_{n} \mathbf{a}_{n}=\mathbf{0} \Rightarrow x_{1}=x_{2}=\ldots . .=x_{n}=0$.
(2) Linearly dependent vectors:A set of vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \ldots \mathbf{a}_{n}$ is said to be linearly dependent if there exist scalars $x_{1}, x_{2}, \ldots \ldots, x_{n}$ not all zero such that $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots \ldots \ldots+x_{n} \mathbf{a}_{n}=\mathbf{0}$ Three vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \quad \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ and $\mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$ will be linearly dependent vectors iff $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=0$.

Properties of linearly independent and dependent vectors

(i) Two non-zero, non-collinear vectors are linearly independent.
(ii) Any two collinear vectors are linearly dependent.
(iii) Any three non-coplanar vectors are linearly independent.
(iv) Any three coplanar vectors are linearly dependent.
(v) Any four vectors in 3-dimensional space are linearly dependent.

