Product of Two Vectors.

Product of two vectors is processed by two methods. When the product of two vectors results is a scalar quantity, then it is called scalar product. It is also known as dot product because we are putting a dot (.) between two vectors.
When the product of two vectors results is a vector quantity then this product is called vector product. It is also known as cross product because we are putting a cross (x) between two vectors.
(1) Scalar or Dot product of two vectors: If \mathbf{a} and \mathbf{b} are two non-zero vectors and θ be the angle between them, then their scalar product (or dot
 product) is denoted by a.b and is defined as the scalar|a||b|cos θ, where $|\mathbf{a}|$ and $|\mathbf{b}|$ are modulii of \mathbf{a} and \mathbf{b} respectively and $0 \leq \theta \leq \pi$.

Important Tips
a.b $\in R$
$\sigma \quad \mathbf{a} . \mathbf{b} \sharp \mathbf{a} \| \mathbf{b} \mid$

- a. $\mathbf{b}>0 \Rightarrow$ angle between \mathbf{a} and \mathbf{b} is acute.
- $\mathbf{a} \cdot \mathbf{b}<0 \Rightarrow$ angle between \mathbf{a} and \mathbf{b} is obtuse.
- The dot product of a zero and non-zero vector is a scalar zero.
(i) Geometrical Interpretation of scalar product: Let \mathbf{a} and \mathbf{b} be two vectors represented by $\overrightarrow{O A}$ and $\overrightarrow{O B}$ respectively. Let θ be the angle between $\overrightarrow{O A}$ and $\overrightarrow{O B}$. Draw $B L \perp O A$ and $A M \perp O B$.

From $\Delta s O B L$ and $O A M$, we have $O L=O B \cos \theta$ and $O M=O A \cos \theta$. Here $O L$ and $O M$ are known as projection of \mathbf{b} on \mathbf{a} and \mathbf{a} on \mathbf{b} respectively.

Now a.b $=|\mathbf{a}||\mathbf{b}| \cos \theta=|\mathbf{a}|(O B \cos \theta)=|\mathbf{a}|(O L)$
$=($ Magnitude of $\mathbf{a})($ Projection of \mathbf{b} on $\mathbf{a})$
Again, a.b $=\mathbf{a} \| \mathbf{b}|\cos \theta \neq \mathbf{b}|(|\mathbf{a}| \cos \theta)=|\mathbf{b}|(O A \cos \theta) \neq \mathbf{b} \mid(O M)$
$\mathbf{a} \cdot \mathbf{b}=($ Magnitude of $\mathbf{b})($ Projection of \mathbf{a} on $\mathbf{b})$
Thus geometrically interpreted, the scalar product of two vectors is the product of modulus of either vector and the projection of the other in its direction.
(ii) Angle between two vectors :If \mathbf{a}, \mathbf{b} be two vectors inclined at an angle θ, then,
$\mathbf{a} . \mathbf{b} \neq \mathbf{a} \| \mathbf{b} \mid \cos \theta$
$\Rightarrow \cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \Rightarrow \theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)$
If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k} ; \theta=\cos ^{-1}\left(\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}\right)$
(2) Properties of scalar product
(i) Commutativity:The scalar product of two vector is commutative i.e., $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$.
(ii) Distributivity of scalar product over vector addition: The scalar product of vectors is distributive over vector addition i.e.,
(a) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c} \quad$ (Left distributivity)
(b) $(\mathbf{b}+\mathbf{c}) \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{a}+\mathbf{c} \cdot \mathbf{a} \quad$ (Right distributivity)
(iii) Let \mathbf{a} and \mathbf{b} be two non-zero vectors $\mathbf{a} \cdot \mathbf{b}=0 \Leftrightarrow \mathbf{a} \perp \mathbf{b}$.

As $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are mutually perpendicular unit vectors along the co-ordinate axes, therefore
$\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{i}=0 ; \mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{j}=0 ; \mathbf{k} \cdot \mathbf{i}=\mathbf{i} \cdot \mathbf{k}=0$.
(iv) For any vector $\mathbf{a}, \mathbf{a} . \mathbf{a} \neq\left.\mathbf{a}\right|^{2}$.

As $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors along the co-ordinate axes, therefore $\mathbf{i} . \mathbf{i} \neq\left.\mathbf{i}\right|^{2}=1, \mathbf{j} . \mathbf{j} \neq\left.\mathbf{j}\right|^{2}=1$ and k. $\mathbf{k} \neq|\mathbf{k}|^{2}=1$
(v) If m is a scalar and \mathbf{a}, \mathbf{b} be any two vectors, then $(m \mathbf{a}) \cdot \mathbf{b}=m(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(m \mathbf{b})$
(vi) If m, n are scalars and \mathbf{a}, \mathbf{b} be two vectors, then $m \mathbf{a} \cdot n \mathbf{b}=m n(\mathbf{a} \cdot \mathbf{b})=(m n \mathbf{a}) \cdot \mathbf{b}=\mathbf{a} \cdot(m n \mathbf{b})$
(vii) For any vectors \mathbf{a} and \mathbf{b}, we have (a) $\mathbf{a} \cdot(-\mathbf{b})=-(\mathbf{a} \cdot \mathbf{b})=(-\mathbf{a}) \cdot \mathbf{b}$
(b) (-a). $(-\mathbf{b})=\mathbf{a} \cdot \mathbf{b}$
(viii) For any two vectors \mathbf{a} and \mathbf{b}, we have
(a) $|\mathbf{a}+\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}+2 \mathbf{a} \cdot \mathbf{b}$
(b) $|\mathbf{a}-\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2 \mathbf{a} \cdot \mathbf{b}$
(c) $(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=|\mathbf{a}|^{2}-|\mathbf{b}|^{2}$
(d) $|\mathbf{a}+\mathbf{b}|=|\mathbf{a}|+|\mathbf{b}| \Rightarrow \mathbf{a} \| \mathbf{b}$
(e) $|\mathbf{a}+\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2} \Rightarrow \mathbf{a} \perp \mathbf{b}$
(f) $|\mathbf{a}+\mathbf{b}|=|\mathbf{a}-\mathbf{b}| \Rightarrow \mathbf{a} \perp \mathbf{b}$
(3) Scalar product in terms of components If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$, Then, $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$. Thus, scalar product of two vectors is equal to the sum of the products of their corresponding components. In particular, $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$.
(4) Components of a vector along and perpendicular to another vector: If a and b be two vectors represented by $\overrightarrow{O A}$ and $\overrightarrow{O B}$. Let θ be the angle between a and \mathbf{b}. Draw $B M \perp O A$. In $\triangle O B M$, we have $\overrightarrow{O B}=\overrightarrow{O M}+\overrightarrow{M B} \Rightarrow \mathbf{b}=\overrightarrow{O M}+\overrightarrow{M B}$

Thus, $\overrightarrow{O M}$ and $\overrightarrow{M B}$ are components of \mathbf{b} along a and perpendicular to a
 respectively.

Now, $\overrightarrow{O M}=(O M) \hat{\mathbf{a}}=(O B \cos \theta) \hat{\mathbf{a}}=(|\mathbf{b}| \cos \theta) \hat{\mathbf{a}}=\left(|\mathbf{b}| \frac{(\mathbf{a} \cdot \mathbf{b})}{|\mathbf{a}||\mathbf{b}|}\right) \hat{\mathbf{a}}=$

$$
\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \hat{\mathbf{a}}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a}
$$

$\therefore \mathbf{b}=\overrightarrow{O M}+\overrightarrow{M B} \Rightarrow \overrightarrow{M B}=\mathbf{b}-\overrightarrow{O M}=\mathbf{b}-\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a}$
Thus, the components of \mathbf{b} along and perpendicular to \mathbf{a} are $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a}$ and $\mathbf{b}-\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a}$ respectively.
(5) Work done by a force: A force acting on a particle is said to do work if the particle is displaced in a direction which is not perpendicular to the force.
The work done by a force is a scalar quantity and its measure is equal to the product of the magnitude of the force and the resolved part of the displacement in the direction of the force.
If a particle be placed at O and a force \vec{F} represented by $\overrightarrow{O B}$ be acting on the
 particle at O. Due to the application of force \vec{F} the particle is displaced in the direction of $\overrightarrow{O A}$. Let $\overrightarrow{O A}$ be the displacement. Then the component of $\overrightarrow{O A}$ in the direction of the force \vec{F} is $|\overrightarrow{O A}| \cos \theta$.
\therefore Work done $=|\vec{F}||\overrightarrow{O A}| \cos \theta=\vec{F} \cdot \overrightarrow{O A}=\vec{F} \cdot \mathbf{d}$, where $\mathbf{d}=\overrightarrow{O A}$ Or Work done $=$ (Force).
(Displacement)
If a number of forces are acting on a particle, then the sum of the works done by the separate forces is equal to the work done by the resultant force.

