Product of Two Vectors.

Product of two vectors is processed by two methods. When the product of two vectors results is a scalar quantity, then it is called scalar product. It is also known as dot product because we are putting a dot (.) between two vectors.

When the product of two vectors results is a vector quantity then this product is called vector product. It is also known as cross product because we are putting a cross (×) between two vectors.

(1) **Scalar or Dot product of two vectors :** If **a** and **b** are two non-zero vectors and θ be the angle between them, then their scalar product (or dot product) is denoted by **a** · **b** and is defined as the scalar $|\mathbf{a}||\mathbf{b}| \cos \theta$, where $|\mathbf{a}||$ and $|\mathbf{b}||$ are modulii of **a** and **b** respectively and $0 \le \theta \le \pi$.

Important Tips

- \mathfrak{P} **a** . **b** $\in R$
- \bigcirc a.b $\leq a \parallel b \parallel$
- [∞] $\mathbf{a} \cdot \mathbf{b} > 0 \implies$ angle between \mathbf{a} and \mathbf{b} is acute.
- [∞] $\mathbf{a} \cdot \mathbf{b} < 0 \implies$ angle between \mathbf{a} and \mathbf{b} is obtuse.
- *The dot product of a zero and non-zero vector is a scalar zero.*

(i) Geometrical Interpretation of scalar product: Let a and b be two vectors represented by

 \overrightarrow{OA} and \overrightarrow{OB} respectively. Let θ be the angle between \overrightarrow{OA} and \overrightarrow{OB} . Draw $BL \perp OA$ and $AM \perp OB$.

From $\Delta s \ OBL$ and OAM, we have $OL = OB \cos \theta$ and $OM = OA \cos \theta$. Here OL and OM are known as projection of **b** on **a** and **a** on **b** respectively.

Now $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = |\mathbf{a}| (OB \cos \theta) = |\mathbf{a}| (OL)$

= (Magnitude of \mathbf{a})(Projection of \mathbf{b} on \mathbf{a})(i)

Again, $\mathbf{a} \cdot \mathbf{b} \neq \mathbf{a} \mid \mid \mathbf{b} \mid \cos \theta \neq \mathbf{b} \mid (\mid \mathbf{a} \mid \cos \theta) \neq \mathbf{b} \mid (OA \cos \theta) \neq \mathbf{b} \mid (OM)$

 $\mathbf{a.b} = (Magnitude of \mathbf{b}) (Projection of \mathbf{a} on \mathbf{b}) \dots (ii)$

Thus geometrically interpreted, the scalar product of two vectors is the product of modulus of either vector and the projection of the other in its direction.

(ii) **Angle between two vectors :** If \mathbf{a}, \mathbf{b} be two vectors inclined at an angle θ , then, $\mathbf{a} \cdot \mathbf{b} \neq \mathbf{a} \mid\mid \mathbf{b} \mid \cos \theta$

$$\Rightarrow \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \Rightarrow \theta = \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \right)$$

If $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$; $\theta = \cos^{-1} \left(\frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}} \right)$

(2) Properties of scalar product

(i) **Commutativity**: The scalar product of two vector is commutative *i.e.*, $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$.

(ii) **Distributivity of scalar product over vector addition:** The scalar product of vectors is distributive over vector addition *i.e.*,

- (a) $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ (Left distributivity)
- (b) $(\mathbf{b} + \mathbf{c}) \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{a} + \mathbf{c} \cdot \mathbf{a}$ (Right distributivity)

(iii) Let **a** and **b** be two non-zero vectors $\mathbf{a} \cdot \mathbf{b} = 0 \Leftrightarrow \mathbf{a} \perp \mathbf{b}$.

As i, j, k are mutually perpendicular unit vectors along the co-ordinate axes, therefore

- $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{i} = 0$; $\mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0$; $\mathbf{k} \cdot \mathbf{i} = \mathbf{i} \cdot \mathbf{k} = 0$.
- (iv) For any vector $\mathbf{a}, \mathbf{a} \cdot \mathbf{a} \neq \mathbf{a} \mid^2$.

As $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are unit vectors along the co-ordinate axes, therefore $\mathbf{i} \cdot \mathbf{i} \neq \mathbf{i} \mid ^2 = 1$, $\mathbf{j} \cdot \mathbf{j} \neq \mathbf{j} \mid ^2 = 1$ and $\mathbf{k} \cdot \mathbf{k} \neq |\mathbf{k}|^2 = 1$

(v) If *m* is a scalar and \mathbf{a}, \mathbf{b} be any two vectors, then $(m\mathbf{a}) \cdot \mathbf{b} = m(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (m\mathbf{b})$

(vi) If *m*, *n* are scalars and **a**, **b** be two vectors, then $m\mathbf{a} \cdot n\mathbf{b} = mn(\mathbf{a} \cdot \mathbf{b}) = (mn \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (mn \mathbf{b})$

(vii) For any vectors \mathbf{a} and \mathbf{b} , we have (a) $\mathbf{a} \cdot (-\mathbf{b}) = -(\mathbf{a} \cdot \mathbf{b}) = (-\mathbf{a}) \cdot \mathbf{b}$ (b) $(-\mathbf{a}) \cdot (-\mathbf{b}) = \mathbf{a} \cdot \mathbf{b}$

(viii) For any two vectors \mathbf{a} and \mathbf{b} , we have

- (a) $|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2\mathbf{a} \cdot \mathbf{b}$
- (b) $|\mathbf{a} \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 2\mathbf{a} \cdot \mathbf{b}$
- (c) $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} \mathbf{b}) = |\mathbf{a}|^2 |\mathbf{b}|^2$
- (d) $|\mathbf{a} + \mathbf{b}| = |\mathbf{a}| + |\mathbf{b}| \Rightarrow \mathbf{a} ||\mathbf{b}|$
- (e) $|\mathbf{a} + \mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 \Rightarrow \mathbf{a} \perp \mathbf{b}$
- $(\mathsf{f}) \mid a + \mathbf{b} \mid = \mid a \mathbf{b} \mid \Rightarrow a \bot \mathbf{b}$

(3) Scalar product in terms of components. If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$, Then, $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$. Thus, scalar product of two vectors is equal to the sum of the products of their corresponding components. In particular, $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 = a_1^2 + a_2^2 + a_3^2$.

(4) **Components of a vector along and perpendicular to another vector:** If **a** and **b** be two vectors represented by \overrightarrow{OA} and \overrightarrow{OB} . Let θ be the angle between **a** and **b**. Draw $BM \perp OA$. In $\triangle OBM$, we have $\overrightarrow{OB} = \overrightarrow{OM} + \overrightarrow{MB} \Rightarrow \mathbf{b} = \overrightarrow{OM} + \overrightarrow{MB}$

Thus, \overrightarrow{OM} and \overrightarrow{MB} are components of **b** along **a** and perpendicular to **a** respectively.

Now,
$$\overrightarrow{OM} = (OM) \,\hat{\mathbf{a}} = (OB \cos \theta) \,\hat{\mathbf{a}} = (|\mathbf{b}| \cos \theta) \,\hat{\mathbf{a}} = \left(|\mathbf{b}| \frac{(\mathbf{a} \cdot \mathbf{b})}{|\mathbf{a}|| |\mathbf{b}|} \right) \hat{\mathbf{a}} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||} \right) \hat{\mathbf{a}} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||} \right) \hat{\mathbf{a}} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||^2} \right) \mathbf{a}$$

$$\therefore \mathbf{b} = \overrightarrow{OM} + \overrightarrow{MB} \Rightarrow \overrightarrow{MB} = \mathbf{b} - \overrightarrow{OM} = \mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \right) \mathbf{a}$$

Thus, the components of **b** along and perpendicular to **a** are $\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a}$ and $\mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a}$ respectively.

(5) Work done by a force: A force acting on a particle is said to do work if the particle is

displaced in a direction which is not perpendicular to the force.

The work done by a force is a scalar quantity and its measure is equal to the product of the magnitude of the force and the resolved part of the displacement in the direction of the force.

If a particle be placed at O and a force \vec{F} represented by \overrightarrow{OB} be acting on the particle at O. Due to the application of force \vec{F} the particle is displaced in the

direction of \overrightarrow{OA} . Let \overrightarrow{OA} be the displacement. Then the component of \overrightarrow{OA} in the direction of the force \vec{F} is $|\overrightarrow{OA}| \cos \theta$.

:. Work done = $|\vec{F}||\vec{OA}|\cos\theta = \vec{F}.\vec{OA} = \vec{F}.\mathbf{d}$, where $\mathbf{d} = \vec{OA}$ Or Work done = (Force).

(Displacement)

If a number of forces are acting on a particle, then the sum of the works done by the separate forces is equal to the work done by the resultant force.