Equation of Line passing through two given points.

(i) Cartesian form:If $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ be two given points, the equations to the line AB are

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

The co-ordinates of a variable point on $A B$ can be expressed in terms of a parameter λ in the form
$x=\frac{\lambda x_{2}+x_{1}}{\lambda+1}, y=\frac{\lambda y_{2}+y_{1}}{\lambda+1}, z=\frac{\lambda z_{2}+z_{1}}{\lambda+1}$
λ being any real number different from -1. In fact, (x, y, z) are the co-ordinates of the point which divides the join of A and B in the ratio $\lambda: 1$.
(ii) Vector form :The vector equation of a line passing through two points with position vectors \mathbf{a} and \mathbf{b} is
$\mathbf{r}=\mathbf{a}+\lambda(\mathbf{b}-\mathbf{a})$

