Reduction of Cartesian form of the Equation of a line to Vector form and vice versa.

Cartesian to vector:Let the Cartesian equation of a line be $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$ (i) This is the equation of a line passing through the point $A(x_1, y_1, z_1)$ and having direction ratios a, b, c. In vector form this means that the line passes through point having position vector $\mathbf{a} = x_1\mathbf{i} + y_1\mathbf{j} + z_1\mathbf{k}$ and is parallel to the vector $\mathbf{m} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$. Thus, the vector form of (i) is $\mathbf{r} = \mathbf{a} + \lambda\mathbf{m}$ or $\mathbf{r} = (x_1\mathbf{i} + y_1\mathbf{j} + z_1\mathbf{k}) + \lambda(a\mathbf{i} + b\mathbf{j} + c\mathbf{k})$, where λ is a parameter.

Vector to cartesian:Let the vector equation of a line be $\mathbf{r} = \mathbf{a} + \lambda \mathbf{m}$

.....(ii) Where $\mathbf{a} = x_1 \mathbf{i} + y_1 \mathbf{j} + z_1 \mathbf{k}$, $\mathbf{m} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and λ is a parameter.

To reduce (ii) to Cartesian form we put $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and equate the coefficients of \mathbf{i} , \mathbf{j} and \mathbf{k} as discussed below.

Putting $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, $\mathbf{a} = x_1\mathbf{i} + y_1\mathbf{j} + z_1\mathbf{k}$ and $\mathbf{m} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ in (ii), we obtain $x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = (x_1\mathbf{i} + y_1\mathbf{j} + z_1\mathbf{k}) + \lambda(a\mathbf{i} + b\mathbf{j} + c\mathbf{k})$

Equating coefficients of **i**, **j** and **k**, we get $x = x_1 + a\lambda$, $y = y_1 + b\lambda$, $z = z_1 + c\lambda$ or

 $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c} = \lambda$