Reduction of Cartesian form of the Equation of a line to Vector

 form and vice versa.Cartesian to vector:Let the Cartesian equation of a line be $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
This is the equation of a line passing through the point $A\left(x_{1}, y_{1}, z_{1}\right)$ and having direction ratios $\mathrm{a}, \mathrm{b}, \mathrm{c}$. In vector form this means that the line passes through point having position vector $\mathbf{a}=x_{1} \mathbf{i}+y_{1} \mathbf{j}+z_{1} \mathbf{k}$ and is parallel to the vector $\mathbf{m}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$. Thus, the vector form of (i) is $\mathbf{r}=\mathbf{a}+\lambda \mathbf{m}$ or $\mathbf{r}=\left(x_{1} \mathbf{i}+y_{1} \mathbf{j}+z_{1} \mathbf{k}\right)+\lambda(a \mathbf{i}+b \mathbf{j}+c \mathbf{k})$, where λ is a parameter.

Vector to cartesian:Let the vector equation of a line be $\mathbf{r}=\mathbf{a}+\lambda \mathbf{m}$

Where $\mathbf{a}=x_{1} \mathbf{i}+y_{1} \mathbf{j}+z_{1} \mathbf{k}, \mathbf{m}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ and λ is a parameter.

To reduce (ii) to Cartesian form we put $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and equate the coefficients of \mathbf{i}, \mathbf{j} and \mathbf{k} as discussed below.
Putting $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}, \mathbf{a}=x_{1} \mathbf{i}+y_{1} \mathbf{j}+z_{1} \mathbf{k}$ and $\mathbf{m}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ in (ii), we obtain $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}=\left(x_{1} \mathbf{i}+y_{1} \mathbf{j}+z_{1} \mathbf{k}\right)+\lambda(a \mathbf{i}+b \mathbf{j}+c \mathbf{k})$
Equating coefficients of \mathbf{i}, \mathbf{j} and \mathbf{k}, we get $x=x_{1}+a \lambda, y=y_{1}+b \lambda, z=z_{1}+c \lambda$ or $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}=\lambda$

