Intersection of Two lines.

Determine whether two lines intersect or not. In case they intersect, the following algorithm is used to find their point of intersection.

Algorithm for cartesianform: Let the two lines be $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ (i) $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$(ii)

Step I:Write the co-ordinates of general points on (i) and (ii). The co-ordinates of general points on (i) and (ii) are given by $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} = \lambda$ and $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2} = \mu$ respectively.

i.e., $(a_1\lambda + x_1, b_1\lambda + y_1 + c_1\lambda + z_1)$ and $(a_2\mu + x_2, b_2\mu + y_2, c_2\mu + z_2)$

Step II: If the lines (i) and (ii) intersect, then they have a common point. $a_1\lambda + x_1 = a_2\mu + x_2, b_1\lambda + y_1 = b_2\mu + y_2$ and $c_1\lambda + z_1 = c_2\mu + z_2$.

Step III: Solve any two of the equations in λ and μ obtained in step II. If the values of λ and μ satisfy the third equation, then the lines (i) and (ii) intersect, otherwise they do not intersect.

Step IV: To obtain the co-ordinates of the point of intersection, substitute the value of λ (or μ) in the co-ordinates of general point (s) obtained in step I.

And