Intersection of Two lines.

Determine whether two lines intersect or not. In case they intersect, the following algorithm is used to find their point of intersection.
Algorithm for cartesianform:Let the two lines be $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$
And

$$
\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
$$

Step I:Write the co-ordinates of general points on (i) and (ii). The co-ordinates of general points on (i) and (ii) are given by $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}=\lambda$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}=\mu$ respectively.
i.e., $\left(a_{1} \lambda+x_{1}, b_{1} \lambda+y_{1}+c_{1} \lambda+z_{1}\right)$ and $\left(a_{2} \mu+x_{2}, b_{2} \mu+y_{2}, c_{2} \mu+z_{2}\right)$

Step II:If the lines (i) and (ii) intersect, then they have a common point. $a_{1} \lambda+x_{1}=a_{2} \mu+x_{2}, b_{1} \lambda+y_{1}=b_{2} \mu+y_{2}$ and $c_{1} \lambda+z_{1}=c_{2} \mu+z_{2}$.

Step III:Solve any two of the equations in λ and μ obtained in step II. If the values of λ and μ satisfy the third equation, then the lines (i) and (ii) intersect, otherwise they do not intersect.

Step IV:To obtain the co-ordinates of the point of intersection, substitute the value of λ (or μ) in the co-ordinates of general point (s) obtained in step I.

