Foot of perpendicular from a point $\mathrm{A}(\alpha, \beta, \gamma)$ to the line

$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$.

(1) Cartesian form

Foot of perpendicular from a point $\mathrm{A}(\alpha, \beta, \gamma)$ to the line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$: If P be the foot of perpendicular, then P is $\left(l r+x_{1}, m r+y_{1}, n r+z_{1}\right)$. Find the direction ratios of AP and apply the condition of perpendicularity of AP and the given line. This will give the value of r and hence the point P which is foot of perpendicular.

Length and equation of perpendicular:The length of the perpendicular is the distance APand its equation is the line joining two known points A and P.

Note: The length of the perpendicular is the perpendicular distance of given point from that line.

Reflection or image of a point in a straight line:If the perpendicular PL from point P on the given line be produced to Q such that $\mathrm{PL}=\mathrm{QL}$, then Q is known as the image or reflection of P in the given line. Also, L is the foot of the perpendicular or the projection of P on the line.

(2) Vector form

Perpendicular distance of a point from a line:Let L is the foot of perpendicular drawn from $P(\vec{\alpha})$ on the line $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$. Since \mathbf{r} denotes the position vector of any point on the line $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$. So, let the position vector of L be $\mathbf{a}+\lambda \mathbf{b}$.
Then $\overrightarrow{P L}=\mathbf{a}-\vec{\alpha}+\lambda \mathbf{b}=(\mathbf{a}-\vec{\alpha})-\left(\frac{(\mathbf{a}-\vec{\alpha}) \mathbf{b}}{|\mathbf{b}|^{2}}\right) \mathbf{b}$

The length PL , is the magnitude of $\overrightarrow{P L}$, and required length of perpendicular.
 Image of a point in a straight line :Let $Q(\vec{\beta})$ is the image of P in $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$

Then, $\vec{\beta}=2 \mathbf{a}-\left(\frac{2(\mathbf{a}-\vec{\alpha}) . \mathbf{b}}{|\mathbf{b}|^{2}}\right) \mathbf{b} \cdot \alpha$

