Definition of plane and its equations.

If point $P(x, y, z)$ moves according to certain rule, then it may lie in a 3-D region on a surface or on a line or it may simply be a point. Whatever we get, as the region of P after applying the rule, is called locus of P. Let us discuss about the plane or curved surface. If Q be any other point on it's locus and all points of the straight line PQ lie on it, it is a plane. In other words if the straight line PQ, however small and in whatever direction it may be, lies completely on the locus, it is a plane, otherwise any curved surface.
(1) General equation of plane:Every equation of first degree of the form $A x+B y+C z+D=0$ represents the equation of a plane. The coefficients of x, y and z i.e. A, B, C are the direction ratios of the normal to the plane.

(2) Equation of co-ordinate planes

XOY-plane: $z=0$
YOZ -plane: $x=0$
ZOX-plane: $y=0$

(3) Vector equation of plane

(i) Vector equation of a plane through the point $A(\mathbf{a})$ and perpendicular to the vector \mathbf{n} is $(\mathbf{r}-\mathbf{a}) . \mathbf{n}=0$ or $\mathbf{r} . \mathbf{n}=\mathbf{a} . \mathbf{n}$

Note: The above equation can also be written as $\mathbf{r . n}=d$, where $d=\mathbf{a} . \mathbf{n}$. This is known as the scalar product form of a plane.

(4) Normal form:Vector equation of a plane normal to unit vector $\hat{\mathbf{n}}$ and at a distance d from the origin is $\mathbf{r} . \hat{\mathbf{n}}=d$.

Note: If \mathbf{n} is not a unit vector, then to reduce the equation $\mathbf{r} . \mathbf{n}=d$ to normal form we divide both sides by $|\mathbf{n}|$ to obtain $\mathbf{r} \cdot \frac{\mathbf{n}}{|\mathbf{n}|}=\frac{d}{|\mathbf{n}|}$ or $\mathbf{r} \cdot \hat{\mathbf{n}}=\frac{d}{|\mathbf{n}|}$.

(5) Equation of a plane passing through a given point and parallel to two

 given vectors: The equation of the plane passing through a point having position vector \mathbf{a} and parallel to \mathbf{b} and cis $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}+\mu \mathbf{c}$, where λ and μ are scalars.

(6) Equation of plane in various forms

(i) Intercept form: If the plane cuts the intercepts of length a, b, c on co-ordinate axes, then its equation is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.
(ii) Normal form:Normal form of the equation of plane is $l x+m y+n z=p$, where I, m, n are the d.c.'s of the normal to the plane and p is the length of perpendicular from the origin.

(7) Equation of plane in particular cases

(i) Equation of plane through the origin is given by $A x+B y+C z=0$.
i.e. if $D=0$, then the plane passes through the origin.

(8) Equation of plane parallel to co-ordinate planes or perpendicular to co-ordinate axes

(i) Equation of plane parallel to YOZ-plane (or perpendicular to x-axis) and at a distance 'a' from it is $x=a$.
(ii) Equation of plane parallel to ZOX-plane (or perpendicular to y-axis) and at a distance ' b ' from it is $y=b$.
(iii) Equation of plane parallel to XOY-plane (or perpendicular to z -axis) and at a distance ' c ' from it is $\mathrm{z}=\mathrm{c}$.
\rightarrow Any plane perpendicular to co-ordinate axis is evidently parallel to co-ordinate plane and vice versa.

- A unit vector perpendicular to the plane containing three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is $\frac{\overrightarrow{A B} \times \overrightarrow{A C}}{|\overrightarrow{A B} \times \overrightarrow{A C}|}$.
(9) Equation of plane perpendicular to co-ordinate planes or parallel to co-ordinate axes
(i) Equation of plane perpendicular to YOZ-plane or parallel to x -axis is $B y+C z+D=0$.
(ii) Equation of plane perpendicular to ZOX-plane or parallel to y axis is $A x+C z+D=0$.
(iii) Equation of plane perpendicular to XOY-plane or parallel to z-axis is $A x+B y+D=0$.
(10) Equation of plane passing through the intersection of two planes
(i) Cartesian form:Equation of plane through the intersection of two planes $P=a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $Q=a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ is $P+\lambda Q=0$, where λ is the parameter.
(ii) Vector form:The equation of any plane through the intersection of planes $\mathbf{r} \cdot \mathbf{n}_{1}=d_{1}$ and $\mathbf{r} . \mathbf{n}_{2}=d_{2}$ is $\mathbf{r} .\left(\mathbf{n}_{1}+\lambda \mathbf{n}_{2}\right)=d_{1}+\lambda d_{2}$, where λ is an arbitrary constant.

(11) Equation of plane parallel to a given plane

(i) Cartesian form:Plane parallel to a given plane $a x+b y+c z+d=0$ is $a x+b y+c z+d^{\prime}=0$, i.e. only constant term is changed.
(ii) Vector form:Since parallel planes have the common normal, therefore equation of plane parallel to plane r.n $=d_{1}$ is $\mathbf{r} . \mathbf{n}=d_{2}$, where d_{2} is a constant determined by the given condition.

