Foot of perpendicular from a point $\mathrm{A}(\alpha, \beta, \gamma)$ to a given plane ax + by $+\mathrm{cz}+\mathrm{d}=0$.

If AP be the perpendicular from A to the given plane, then it is parallel to the normal, so that its equation is
$\frac{x-\alpha}{a}=\frac{y-\beta}{b}=\frac{z-\gamma}{c}=r \quad$ (say)
Any point P on it is $(a r+\alpha, b r+\beta, c r+\gamma)$. It lies on the given plane and we find the value of r and hence the point P.

(1) Perpendicular distance

(i) Cartesian form :The length of the perpendicular from the point $P\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$ is $\left|\frac{a x_{1}+b y_{1}+c z_{1}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$.
Note: The distance between two parallel planes is the algebraic difference of perpendicular distances on the planes from origin.
Distance between two parallel planes $A x+B y+C z+D_{1}=0$ and $A x+B y+C z+D_{2}=0$ is $\frac{D_{2} \sim D_{1}}{\sqrt{A^{2}+B^{2}+C^{2}}}$.
(ii) Vector form:The perpendicular distance of a point having position vector a from the plane $\mathbf{r} . \mathbf{n}=d$ is given by $p=\frac{|\mathbf{a} \cdot \mathbf{n}-d|}{|\mathbf{n}|}$
(2) Position of two point's w.r.t. a plane:Two points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ lie on the same or opposite sides of a plane $a x+b y+c z+d=0$ according to $a x_{1}+b y_{1}+c z_{1}+d$ and $a x_{2}+b y_{2}+c z_{2}+d$ are of same or opposite signs. The plane divides the line joining the points P and Q externally or internally according to P and Q are lying on same or opposite sides of the plane.

