Angle between two planes.

(1) Cartesian form:Angle between the planes is defined as angle between normals to the planes drawn from any point. Angle between the planes $a_{1} x+b_{1} y+c_{1} z+d_{1}=0$ and $a_{2} x+b_{2} y+c_{2} z+d_{2}=0$ is
$\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}\right)}}\right)$

Note: If $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$, then the planes are perpendicular to each other.
If $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$, then the planes are parallel to each other.
(2) Vector form:An angle θ between the planes $\mathbf{r}_{1} \cdot \mathbf{n}_{1}=d_{1}$ and $\mathbf{r}_{2} \cdot \mathbf{n}_{2}=d_{2}$ is given by $\cos \theta= \pm \frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1} \| \mathbf{n}_{2}\right|}$.

