Equation of planes bisecting angle between two given planes.

(1) Cartesian form:Equations of planes bisecting angles between the planes

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \text { and } a_{2} x+b_{2} y+c_{2} z+d=0 \text { are } \\
& \frac{a_{1} x+b_{1} y+c_{1} z+d_{1}}{\sqrt{\left(a_{1}^{2}+b_{1}^{2}+c_{1}^{2}\right)}}= \pm \frac{a_{2} x+b_{2} y+c_{2} z+d_{2}}{\sqrt{\left(a_{2}^{2}+b_{2}^{2}+c_{2}^{2}\right)}}
\end{aligned}
$$

Note: If angle between bisector plane and one of the plane is less than 45°, then it is acute angle bisector otherwise it is obtuse angle bisector.
If $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$ is negative, then origin lies in the acute angle between the given planes provided d_{1} and d_{2} are of same sign and if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$ is positive, then origin lies in the obtuse angle between the given planes.
(2) Vector form:The equation of the planes bisecting the angles between the planes $\mathbf{r}_{1} \cdot \mathbf{n}_{1}=d_{1}$ and $\mathbf{r}_{2} \cdot \mathbf{n}_{2}=d_{2}$ are $\frac{\left|\mathbf{r} \cdot \mathbf{n}_{1}-d_{1}\right|}{\left|\mathbf{n}_{1}\right|}=\frac{\left|\mathbf{r} \cdot \mathbf{n}_{2}-d_{2}\right|}{\left|\mathbf{n}_{2}\right|}$ or $\frac{\mathbf{r} \cdot \mathbf{n}_{1}-d_{1}}{\left|\mathbf{n}_{1}\right|}= \pm \frac{\mathbf{r} \cdot \mathbf{n}_{2}-d_{2}}{\left|\mathbf{n}_{2}\right|}$ or r. $\left(\hat{\mathbf{n}}_{1} \pm \hat{\mathbf{n}}_{2}\right)=\frac{d_{1}}{\left|\mathbf{n}_{1}\right|} \pm \frac{d_{2}}{\left|\mathbf{n}_{2}\right|}$.

