Coplanar lines.

Lines are said to be coplanar if they lie in the same plane or a plane can be made to pass through them.

(1) Condition for the lines to be coplanar

(i) **Cartesian form:** If the lines $\frac{x - x_1}{l_1} = \frac{y - y_1}{m_1} = \frac{z - z_1}{n_1}$ and $\frac{x - x_2}{l_2} = \frac{y - y_2}{m_2} = \frac{z - z_2}{n_2}$ are

coplanar

Then $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0.$

The equation of the plane containing them is $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0 \text{ or }$

 $\begin{vmatrix} x - x_2 & y - y_2 & z - z_2 \\ l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \end{vmatrix} = 0.$

(ii) **Vector form:** If the lines $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{b}_1$ and $\mathbf{r} = \mathbf{a}_2 + \lambda \mathbf{b}_2$ are coplanar, then $[\mathbf{a}_1\mathbf{b}_1\mathbf{b}_2] = [\mathbf{a}_2\mathbf{b}_1\mathbf{b}_2]$ and the equation of the plane containing them is $[\mathbf{r}\mathbf{b}_1\mathbf{b}_2] = [\mathbf{a}_1\mathbf{b}_1\mathbf{b}_2]$ or $[\mathbf{r}\mathbf{b}_1\mathbf{b}_2] = [\mathbf{a}_2\mathbf{b}_1\mathbf{b}_2]$.

Note: Every pair of parallel lines is coplanar. Two coplanar lines are either parallel or intersecting. The three sides of a triangle are coplanar.

Important Tips

 $\ \ \,$ **Division by plane :** The ratio in which the line segment PQ, joining P(x₁, y₁, z₁) and Q(x₂,

y₂, z₂), is divided by plane ax + by + cz + d = 0 is $= -\left(\frac{ax_1 + by_1 + cz_1 + d}{ax_2 + by_2 + cz_2 + d}\right)$.

Division by co-ordinate planes : The ratio in which the line segment PQ, joining $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is divided by co-ordinate planes are as follows :