Coplanar lines.

Lines are said to be coplanar if they lie in the same plane or a plane can be made to pass through them.
(1) Condition for the lines to be coplanar
(i) Cartesian form:If the lines $\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}$ and $\frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}}$ are coplanar
Then $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right|=0$.
The equation of the plane containing them is $\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right|=0$ or
$\left|\begin{array}{ccc}x-x_{2} & y-y_{2} & z-z_{2} \\ l_{1} & m_{1} & n_{1} \\ l_{2} & m_{2} & n_{2}\end{array}\right|=0$.
(ii) Vector form:If the lines $\mathbf{r}=\mathbf{a}_{1}+\lambda \mathbf{b}_{1}$ and $\mathbf{r}=\mathbf{a}_{2}+\lambda \mathbf{b}_{2}$ are coplanar, then
$\left[\mathbf{a}_{1} \mathbf{b}_{1} \mathbf{b}_{2}\right]=\left[\mathbf{a}_{2} \mathbf{b}_{1} \mathbf{b}_{2}\right]$ and the equation of the plane containing them is $\left[\mathbf{r} \mathbf{b}_{1} \mathbf{b}_{2}\right]=\left[\mathbf{a}_{1} \mathbf{b}_{1} \mathbf{b}_{2}\right]$ or $\left[\mathbf{r} \mathbf{b}_{1} \mathbf{b}_{2}\right]=\left[\mathbf{a}_{2} \mathbf{b}_{1} \mathbf{b}_{2}\right]$.

Note: Every pair of parallel lines is coplanar.
Two coplanar lines are either parallel or intersecting.
The three sides of a triangle are coplanar.

Important Tips

G. Division by plane : The ratio in which the line segment $P Q$, joining $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}\right.$, $\left.\mathrm{y}_{2}, \mathrm{z}_{2}\right)$, is divided by plane $a x+b y+c z+d=0$ is $=-\left(\frac{a x_{1}+b y_{1}+c z_{1}+d}{a x_{2}+b y_{2}+c z_{2}+d}\right)$.
(6) Division by co-ordinate planes : The ratio in which the line segment $P Q$, joining $P\left(x_{1}\right.$, $\left.y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is divided by co-ordinate planes are as follows :
(i) By yz-plane : $-\mathrm{x}_{1} / \mathrm{x}_{2}$
(ii) By zx-plane : $-\mathrm{y}_{1} / \mathrm{y}_{2}$
(ii) By xy-plane: $-z_{1} / z_{2}$

