Angle between line and plane.

(1) Cartesian form:The angle θ between the line $\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}$, and the plane $a x+b y+c z+d=0$, is given by $\sin \theta=\frac{a l+b m+c n}{\sqrt{\left(a^{2}+b^{2}+c^{2}\right)} \sqrt{\left(l^{2}+m^{2}+n^{2}\right)}}$.
(i) The line is perpendicular to the plane if and only if $\frac{a}{l}=\frac{b}{m}=\frac{c}{n}$.
(ii) The line is parallel to the plane if and only if $a l+b m+c n=0$.
(iii) The line lies in the plane if and only if $a l+b m+c n=0$ and $a \alpha+b \beta+c \gamma+d=0$.
(2) Vector form:If θ is the angle between a line $\mathbf{r}=(\mathbf{a}+\lambda \mathbf{b})$ and the plane $\mathbf{r} . \mathbf{n}=d$, then $\sin \theta=\frac{\mathbf{b} . \mathbf{n}}{|\mathbf{b} \| \mathbf{n}|}$.
(i) Condition of perpendicularity:If the line is perpendicular to the plane, then it is parallel to the normal to the plane. Therefore \mathbf{b} and \mathbf{n} are parallel.
So, $\mathbf{b} \times \mathbf{n}=0$ or $\mathbf{b}=\lambda \mathbf{n}$ for some scalar λ.

(ii) Condition of parallelism:If the line is parallel to the plane, then it is perpendicular to the normal to the plane. Therefore \mathbf{b} and \mathbf{n} are perpendicular. So, $\mathbf{b} . \mathbf{n}=0$.
(iii) If the line $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$ lies in the plane $\mathbf{r} \cdot \mathbf{n}=\mathrm{d}$, then (i) $\mathbf{b} \cdot \mathbf{n}=0$ and (ii) $\mathbf{a} \cdot \mathbf{n}=\mathrm{d}$.

