General equation of sphere.

The general equation of a sphere is $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ with centre $(-\mathrm{u},-\mathrm{v},-$ w)
i.e. $(-(1 / 2)$ coeff. of $\mathrm{x},-(1 / 2)$ coeff. of $\mathrm{y},-(1 / 2)$ coeff. of z$)$ and, radius $=\sqrt{u^{2}+v^{2}+w^{2}-d}$

From the above equation, we note the following characteristics of the equation of a sphere :
(i) It is a second degree equation in $\mathrm{x}, \mathrm{y}, \mathrm{z}$;
(ii) The coefficients of x^{2}, y^{2}, z^{2} are all equal;
(iii) The terms containing the products $x y, y z$ and $z x$ are absent.

Note: The equation $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ represents,
(i) A real sphere, if $u^{2}+v^{2}+w^{2}-d>0$.
(ii) A point sphere, if $u^{2}+v^{2}+w^{2}-d=0$.
(iii) An imaginary sphere, if $u^{2}+v^{2}+w^{2}-d<0$.

Important Tips

If $u^{2}+v^{2}+w^{2}-d<0$, then the radius of sphere is imaginary, whereas the centre is real. Such a sphere is called "pseudo-sphere" or a "virtual sphere.

- The equation of the sphere contains four unknown constants u, v, w and d and therefore a sphere can be found to satisfy four conditions.

