Equation in sphere in various forms.

(1) Equation of sphere with given center and radius
(i) Cartesian form :The equation of a sphere with center ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) and radius R is $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=R^{2}$

If the centre is at the origin, then equation (i) takes the form $x^{2}+y^{2}+z^{2}=R^{2}$, which is known as the standard form of the equation of the sphere.
(ii) Vector form:The equation of sphere with center at $\mathrm{C}(\mathbf{c})$ and radius 'a' is $|\mathbf{r}-\mathbf{c}|=a$.

(2) Diameter form of the equation of a sphere

(i) Cartesian form:If $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are the co-ordinates of the extremities of a diameter of a sphere, then its equation is $\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)+\left(z-z_{1}\right)\left(z-z_{2}\right)=0$.
(ii) Vector form:If the position vectors of the extremities of a diameter of a sphere are \mathbf{a} and \mathbf{b}, then its equation is $(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{r}-\mathbf{b})=0$ or $|\mathbf{r}|^{2}-\mathbf{r} .(\mathbf{a}-\mathbf{b})+\mathbf{a} \cdot \mathbf{b}=0$.

