Condition of tangency of a plane to a sphere.

A plane touches a given sphere if the perpendicular distance from the centre of the sphere to the plane is equal to the radius of the sphere.
(1) Cartesian form:The plane $l x+m y+n z=p$ touches the sphere

$$
x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0 \text {, if }(u l+v m+w n-p)^{2}=\left(l^{2}+m^{2}+n^{2}\right)\left(u^{2}+v^{2}+w^{2}-d\right)
$$

(2) Vector form:The plane $\mathbf{r} . \mathbf{n}=d$ touches the sphere $|\mathbf{r}-\mathbf{a}|=R$ if $\frac{|\mathbf{a . n}-d|}{|\mathbf{n}|}=R$.

Important Tips

- Two spheres S_{1} and S_{2} with centres C_{1} and C_{2} and radii r_{1} and r_{2} respectively
(i) Do not meet and lies farther apart iff $\left|C_{1} C_{2}\right|>r_{1}+r_{2}$
(ii) Touch internally iff $\left|C_{1} C_{2}\right|=\left|r_{1}-r_{2}\right|$
(iii) Touch externally iff $\left|C_{1} C_{2}\right|=r_{1}+r_{2}$
(iv) Cut in a circle iff $\left|r_{1}-r_{2}\right|<\left|C_{1} C_{2}\right|<r_{1}+r_{2}$
(v) One lies within the other if $\left|C_{1} C_{2}\right|<\left|r_{1}-r_{2}\right|$.

When two spheres touch each other the common tangent plane is $S_{1}-S_{2}=0$ and when they cut in a circle, the plane of the circle is $S_{1}-S_{2}=0$; coefficients of x^{2}, y^{2}, z^{2} being unity in both the cases.
(G. Let p be the length of perpendicular drawn from the centre of the sphere $x^{2}+y^{2}+z^{2}=r^{2}$ to the plane $A x+B y+C z+D=0$, then
(i) The plane cuts the sphere in a circle iff $\mathrm{p}<\mathrm{r}$ and in this case, the radius of circle is $\sqrt{r^{2}-p^{2}}$.
(ii) The plane touches the sphere iff $p=r$.
(iii) The plane does not meet the sphere iff $p>r$.

Equation of concentric sphere :Any sphere concentric with the sphere $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$ is $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+\lambda=0$, where λ is some real which makes it a sphere.

