Intersection of straight line and a sphere.

Let the equations of the sphere and the straight line be $x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0$

And

$$
\begin{equation*}
\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{z-\gamma}{n}=r \quad \text { (say) } \tag{i}
\end{equation*}
$$

Any point on the line (ii) is $(\alpha+l r, \beta+m r, \gamma+n r)$.
If this point lies on the sphere (i) then we have,
$(\alpha+l r)^{2}+(\beta+m r)^{2}+(\gamma+n r)^{2}+2 u(\alpha+l r)+2 v(\beta+m r)+2 w(\gamma+n r)+d=0$
or, $\left.r^{2}\left[l^{2}+m^{2}+n^{2}\right]+2 r[l(u+\alpha)+m(v+\beta)]+n(w+\gamma)\right]+\left(\alpha^{2}+\beta^{2}+\gamma^{2}+2 u \alpha+2 v \beta+2 w \gamma+d\right)=0$

This is a quadratic equation in r and so gives two values of r and therefore the line (ii) meets the sphere (i) in two points which may be real, coincident and imaginary, according as root of (iii) are so.

Note: If $\mathrm{I}, \mathrm{m}, \mathrm{n}$ are the actual d.c.'s of the line, then $l^{2}+m^{2}+n^{2}=1$ and then the equation (iii) can be simplified.

