Intersection of straight line and a sphere.

Let the equations of the sphere and the straight line be $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$

.....(i)

And

$$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n} = r \qquad \text{(say)}$$

Any point on the line (ii) is $(\alpha + lr, \beta + mr, \gamma + nr)$.

If this point lies on the sphere (i) then we have,

$$(\alpha + lr)^{2} + (\beta + mr)^{2} + (\gamma + nr)^{2} + 2u(\alpha + lr) + 2v(\beta + mr) + 2w(\gamma + nr) + d = 0$$

or, $r^{2}[l^{2} + m^{2} + n^{2}] + 2r[l(u + \alpha) + m(v + \beta)] + n(w + \gamma)] + (\alpha^{2} + \beta^{2} + \gamma^{2} + 2u\alpha + 2v\beta + 2w\gamma + d) = 0$(iii)

This is a quadratic equation in r and so gives two values of r and therefore the line (ii) meets the sphere (i) in two points which may be real, coincident and imaginary, according as root of (iii) are so.

Note: If I, m, n are the actual d.c.'s of the line, then $l^2 + m^2 + n^2 = 1$ and then the equation (iii) can be simplified.