Triangle.

(1) Co-ordinates of the centroid

(i) If $(x_1, y_1, z_1), (x_2, y_2, z_2)$ and (x_3, y_3, z_3) are the vertices of a triangle, then co-ordinates of its centroid are $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$.

(ii) If (x_r, y_r, z_r) ; r = 1, 2, 3, 4, are vertices of a tetrahedron, then co-ordinates of its centroid are $\left(\frac{x_1 + x_2 + x_3 + x_4}{4}, \frac{y_1 + y_2 + y_3 + y_4}{4}, \frac{z_1 + z_2 + z_3 + z_4}{4}\right)$.

(iii) If G (α , β , γ) is the centroid of \triangle ABC, where A is (x_1, y_1, z_1) , B is (x_2, y_2, z_2) , then C is $(3\alpha - x_1 - x_2, 3\beta - y_1 - y_2, 3\gamma - z_1 - z_2)$.

(2) **Area of triangle**:Let $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ be the vertices of a triangle, then

$$\Delta_{x} = \frac{1}{2} \begin{vmatrix} y_{1} & z_{1} & 1 \\ y_{2} & z_{2} & 1 \\ y_{3} & z_{3} & 1 \end{vmatrix}, \ \Delta_{y} = \frac{1}{2} \begin{vmatrix} x_{1} & z_{1} & 1 \\ x_{2} & z_{2} & 1 \\ x_{3} & z_{3} & 1 \end{vmatrix}, \ \Delta_{z} = \frac{1}{2} \begin{vmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{vmatrix}$$

Now, area of $\triangle ABC$ is given by the relation $\Delta = \sqrt{\Delta_x^2 + \Delta_y^2 + \Delta_z^2}$.

(3) Condition of collinearity: Points $A(x_1, y_1, z_1), B(x_2, y_2, z_2)$ and $C(x_3, y_3, z_3)$ are collinear

If $\frac{x_1 - x_2}{x_2 - x_3} = \frac{y_1 - y_2}{y_2 - y_3} = \frac{z_1 - z_2}{z_2 - z_3}$