Triangle

(1) Co-ordinates of the centroid

(i) If $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ are the vertices of a triangle, then co-ordinates of its centroid are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$.
(ii) If $\left(x_{r}, y_{r}, z_{r}\right) ; r=1,2,3,4$, are vertices of a tetrahedron, then co-ordinates of its centroid are $\left(\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}, \frac{y_{1}+y_{2}+y_{3}+y_{4}}{4}, \frac{z_{1}+z_{2}+z_{3}+z_{4}}{4}\right)$.
(iii) If $\mathrm{G}(\alpha, \beta, \gamma)$ is the centroid of $\triangle \mathrm{ABC}$, where A is $\left(x_{1}, y_{1}, z_{1}\right), \mathrm{B}$ is $\left(x_{2}, y_{2}, z_{2}\right)$, then C is $\left(3 \alpha-x_{1}-x_{2}, 3 \beta-y_{1}-y_{2}, 3 \gamma-z_{1}-z_{2}\right)$.
(2) Area of triangle:Let $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ be the vertices of a triangle, then

$$
\Delta_{x}=\frac{1}{2}\left|\begin{array}{lll}
y_{1} & z_{1} & 1 \\
y_{2} & z_{2} & 1 \\
y_{3} & z_{3} & 1
\end{array}\right|, \Delta_{y}=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & z_{1} & 1 \\
x_{2} & z_{2} & 1 \\
x_{3} & z_{3} & 1
\end{array}\right|, \Delta_{z}=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

Now, area of $\triangle \mathrm{ABC}$ is given by the relation $\Delta=\sqrt{\Delta_{x}^{2}+\Delta_{y}^{2}+\Delta_{z}^{2}}$.
Also, $\Delta=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|=\frac{1}{2}| | \begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}\end{array}| |$

(3) Condition of collinearity: Points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ are collinear If $\frac{x_{1}-x_{2}}{x_{2}-x_{3}}=\frac{y_{1}-y_{2}}{y_{2}-y_{3}}=\frac{z_{1}-z_{2}}{z_{2}-z_{3}}$

