Direction cosines and Direction ratio.

(1) Direction cosines

(i) The cosines of the angle made by a line in anticlockwise direction with positive direction of co-ordinate axes are called the direction cosines of that line.

If α , β , γ be the angles which a given directed line makes with the positive direction of the x, y, z co-ordinate axes respectively, then $\cos\alpha$, $\cos\beta$, $\cos\gamma$ are

called the direction cosines of the given line and are generally denoted by I, m, n respectively. Thus, $l = \cos \alpha$, $m = \cos \beta$ and $n = \cos \gamma$.

By definition, it follows that the direction cosine of the axis of x are respectively $\cos 0^{\circ}$, $\cos 90^{\circ}$, $\cos 90^{\circ}$ i.e. (1, 0, 0). Similarly direction cosines of the axes of y and z are respectively (0, 1, 0) and (0, 0, 1).

Relation between the direction cosines: Let OP be any line through the origin O which has direction cosines I, m, n. Let P = (x, y, z) and OP = r. Then $OP^2 = x^2 + y^2 + z^2 = r^2$ (i)

From P draw PA, PB, PC perpendicular on the co-ordinate axes, so that

OA = x, OB = y, OC = z. Also, $\angle POA = \alpha, \angle POB = \beta$ and $\angle POC = \gamma$.

From triangle AOP, $l = \cos \alpha = \frac{x}{r} \Rightarrow x = lr$

Similarly y = mr and z = nr.

Hence from (i), $r^2(l^2 + m^2 + n^2) = x^2 + y^2 + z^2 = r^2 \Rightarrow l^2 + m^2 + n^2 = 1$

or, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$, or, $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$

Note: If OP = r and the co-ordinates of point P be (x, y, z), then d.c.'s of line OP are x/r, y/r, z/r. Direction cosines of $\mathbf{r} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ are $\frac{a}{|\mathbf{r}|}, \frac{b}{|\mathbf{r}|}, \frac{c}{|\mathbf{r}|}$.

Since $-1 \le \cos x \le 1$, $\forall x \in R$, hence values of I, m, n are such real numbers which are not less than -1 and not greater than 1. Hence d.c.' $s \in [-1, 1]$.

The direction cosines of a line parallel to any co-ordinate axis are equal to the direction cosines of the coordinate axis.

The number of lines which are equally inclined to the co-ordinate axes is 4. If I, m, n are the d.c.'s of a line, then the maximum value of $lmn = \frac{1}{2\sqrt{2}}$.

Important Tips

- The angles α , β , γ are called the direction angles of line AB.
- The d.c.'s of line BA are $\cos(\pi \alpha)$, $\cos(\pi \beta)$ and $\cos(\pi \gamma)$ i.e., $-\cos\alpha$, $-\cos\beta$, $-\cos\gamma$.
- \sim Angles α , β , γ are not coplanar.
- $\approx \alpha + \beta + \gamma$ is not equal to 360° as these angles do not lie in same plane.
- Therefore $\mathbf{r} = \overrightarrow{OP}$ has d.c.'s l, m, n then
- $x = l |\mathbf{r}|, y = m |\mathbf{r}|, z = n |\mathbf{r}|.$
- Projection of a vector **r** on the co-ordinate axes are $l |\mathbf{r}|$, $m |\mathbf{r}|$, $n |\mathbf{r}|$.
- \mathcal{F} $\mathbf{r} \models \mathbf{r} \mid (\mathbf{l}\mathbf{i} + m\mathbf{j} + n\mathbf{k})$ and $\hat{\mathbf{r}} = \mathbf{l}\mathbf{i} + m\mathbf{j} + n\mathbf{k}$

(2) Direction ratio

(i) Three numbers which are proportional to the direction cosines of a line are called the direction ratio of that line. If a, b, c are three numbers proportional to direction cosines l, m, n of a line, then a, b, c are called its direction ratios. They are also called direction numbers or direction components.

Hence by definition, we have $\frac{l}{a} = \frac{m}{b} = \frac{n}{c} = k$ (say) \Rightarrow l = ak, m = bk, n = ck $\Rightarrow l^2 + m^2 + n^2 = (a^2 + b^2 + c^2) = k^2 \Rightarrow k = \pm \frac{1}{\sqrt{a^2 + b^2 + c^2}}$ $l = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}}, m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}}, n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}$

where the sign should be taken all positive or all negative.

Note: Direction ratios are not uniques, whereas d.c.'s are unique. i.e., $a^2 + b^2 + c^2 \neq 1$

(ii) Let $\mathbf{r} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ be a vector. Then its d.r.'s are a, b, c

If a vector **r** has d.r.'s a, b, c then $\mathbf{r} = \frac{|\mathbf{r}|}{\sqrt{a^2 + b^2 + c^2}} (a\mathbf{i} + b\mathbf{j} + c\mathbf{k})$

(iii) **D.c.'s and d.r.'s of a line joining two points:**The direction ratios of line PQ joining

 $P(x_1,y_1,z_1)$ and $Q(x_2,y_2,z_2)$ are $x_2 - x_1 = a$, $y_2 - y_1 = b$ and $z_2 - z_1 = c$ (say). Then direction cosines are,

$$l = \frac{(x_2 - x_1)}{\sqrt{\Sigma(x_2 - x_1)^2}}, m = \frac{(y_2 - y_1)}{\sqrt{\Sigma(x_2 - x_1)^2}}, n = \frac{(z_2 - z_1)}{\sqrt{\Sigma(x_2 - x_1)^2}}$$

i.e., $l = \frac{x_2 - x_1}{PQ}, m = \frac{y_2 - y_1}{PQ}, n = \frac{z_2 - z_1}{PQ}$.

