Projection.

(1) Projection of a point on a line:The projection of a point P on a line $A B$ is the foot N of the perpendicular $P N$ from P on the line $A B$.
N is also the same point where the line $A B$ meets the plane through P and perpendicular to $A B$.

(2) Projection of a segment of a line on another line and its length:The projection of the segment $A B$ of a given line on another line $C D$ is the segment $A^{\prime} B^{\prime}$ of $C D$ where A^{\prime} and B^{\prime} are the projections of the points A and B on the line $C D$. The length of the projection $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$.
$A^{\prime} B^{\prime}=A N=A B \cos \theta$

(3) Projection of a line joining the points $\mathbf{P}\left(\mathbf{x}_{1}, \mathbf{y}_{1}, z_{1}\right)$ and $\mathbf{Q}\left(\mathbf{x}_{2}, \mathbf{y}_{2}, z_{2}\right)$ on another line whose direction cosines are \mathbf{I}, \mathbf{m} and \mathbf{n} : Let PQ be a line segment where $P \equiv\left(x_{1}, y_{1}, z_{1}\right)$ and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ and AB be a given line with d.c.'s as $\mathrm{I}, \mathrm{m}, \mathrm{n}$. If the line segment PQ makes angle θ with the line $A B$, then

Projection of PQ is $\mathrm{P}^{\prime} \mathrm{Q}^{\prime}=\mathrm{PQ} \cos \theta=\left(x_{2}-x_{1}\right) \cos \alpha+\left(y_{2}-y_{1}\right) \cos \beta+\left(z_{2}-z_{1}\right) \cos \gamma$
$=\left(x_{2}-x_{1}\right) l+\left(y_{2}-y_{1}\right) m+\left(z_{2}-z_{1}\right) n$

Important Tips

F For x-axis, $I=1, m=0, n=0$.
Hence, projection of PQ on x-axis $=x_{2}-x_{1}$, Projection of $P Q$ on y-axis $=y_{2}-y_{1}$ and Projection of $P Q$ on z-axis $=z_{2}-z_{1}$

If P is a point $\left(x_{1}, y_{1}, z_{1}\right)$, then projection of OP on a line whose direction cosines are I, m, n, is $l_{1} x_{1}+m_{1} y_{1}+n_{1} z_{1}$, where O is the origin.
If I_{1}, m_{1}, n_{1} and I_{2}, m_{2}, n_{2} are the d.c.'s of two concurrent lines, then the d.c.'s of the lines bisecting the angles between them are proportional to $l_{1} \pm l_{2}, m_{1} \pm m_{2}, n_{1} \pm n_{2}$.

