Projection.

(1) **Projection of a point on a line:**The projection of a point P on a line AB is the foot N of the

perpendicular PN from P on the line AB.

N is also the same point where the line AB meets the plane through P and perpendicular to AB.

(2) Projection of a segment of a line on another line and its length: The projection of the

segment AB of a given line on another line CD is the segment A'B' of CD where A' and B' are the projections of the points A and B on the line CD. The length of the projection A' B'.

 $A'B' = AN = AB\cos\theta$

R

N

(3) Projection of a line joining the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ on another line whose direction cosines are I, m and n : Let PQ be a line segment where $P \equiv (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$ and AB be a given line with d.c.'s as I, m, n. If the line segment PQ makes angle θ with the line AB, then

Projection of PQ is P'Q' = PQ $\cos\theta = (x_2 - x_1)\cos\alpha + (y_2 - y_1)\cos\beta + (z_2 - z_1)\cos\gamma$ = $(x_2 - x_1)l + (y_2 - y_1)m + (z_2 - z_1)n$

Important Tips

☞ For x-axis, I = 1, m =0, n=0.

Hence, projection of PQ on x-axis = $x_2 - x_1$, Projection of PQ on y-axis = $y_2 - y_1$ and Projection of PQ on z-axis = $z_2 - z_1$

☞ If P is a point (x_1 , y_1 , z_1), then projection of OP on a line whose direction cosines are l, m, n, is $l_1x_1 + m_1y_1 + n_1z_1$, where O is the origin.

 \sim If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are the d.c.'s of two concurrent lines, then the d.c.'s of the lines bisecting the angles between them are proportional to $l_1 \pm l_2$, $m_1 \pm m_2$, $n_1 \pm n_2$.