Angle between Two lines.

(1) Cartesian form:Let θ be the angle between two straight lines $A B$ and $A C$ whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} respectively, is given by $\cos \theta=l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}$.
If direction ratios of two lines a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are given, then angle between two lines is given by $\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \cdot \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$.

Particular results:We have,
$\sin ^{2} \theta=1-\cos ^{2} \theta=\left(l_{1}^{2}+m_{1}^{2}+n_{1}^{2}\right)\left(l_{2}^{2}+m_{2}^{2}+n_{2}^{2}\right)-\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)^{2}$
$=\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}$
$\Rightarrow \sin \theta= \pm \sqrt{\sum\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}}$, which is known as Lagrange's identity.
The value of $\sin \theta$ can easily be obtained by the following form.
$\sin \theta=\sqrt{\left|\begin{array}{ll}l_{1} & m_{1} \\ l_{2} & m_{2}\end{array}\right|^{2}+\left|\begin{array}{ll}m_{1} & n_{1} \\ n_{2} & n_{2}\end{array}\right|^{2}+\left|\begin{array}{ll}n_{1} & l_{1} \\ n_{2} & l_{2}\end{array}\right|^{2}}$
When d.r.'s of the lines are given if a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are d.r.'s of given two lines, then
angle θ between them is given by $\sin \theta=\frac{\sqrt{\sum\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$

Condition of perpendicularity:If the given lines are perpendicular, then $\theta=90^{\circ}$ i.e. $\cos \theta=0$
$\Rightarrow l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}=0$ or $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

Condition of parallelism:If the given lines are parallel, then $\theta=0^{\circ}$ i.e. $\sin \theta=0$
$\Rightarrow\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}+\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}=0$, which is true, only when
$l_{1} m_{2}-l_{2} m_{1}=0, m_{1} n_{2}-m_{2} n_{1}=0$ and $n_{1} l_{2}-n_{2} l_{1}=0$
$\Rightarrow \frac{l_{1}}{l_{2}}=\frac{m_{1}}{m_{2}}=\frac{n_{1}}{n_{2}}$.

Similarly, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$.

Note: The angle between any two diagonals of a cube is $\cos ^{-1}\left(\frac{1}{3}\right)$.
The angle between a diagonal of a cube and the diagonal of a faces of the cube is $\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)$.
If a straight line makes angles $\alpha, \beta, \gamma, \delta$ with the diagonals of a cube, then
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$
If the edges of a rectangular parallelopiped be a, b, c, then the angles between the two diagonals are $\cos ^{-1}\left[\frac{ \pm a^{2} \pm b^{2} \pm c^{2}}{a^{2}+b^{2}+c^{2}}\right]$
(2) Vector form:Let the vector equations of two lines be $\mathbf{r}=\mathbf{a}_{1}+\lambda \mathbf{b}_{1}$ and $\mathbf{r}=\mathbf{a}_{2}+\lambda \mathbf{b}_{2}$ As the lines are parallel to the vectors \mathbf{b}_{1} and \mathbf{b}_{2} respectively, therefore angle between the lines is same as the angle between the vectors \mathbf{b}_{1} and \mathbf{b}_{2}. Thus if θ is the angle between the given lines, then $\cos \theta=\frac{\mathbf{b}_{1} \cdot \mathbf{b}_{2}}{\left|\mathbf{b}_{1} \|\left|\mathbf{b}_{2}\right|\right.}$.

Note: If the lines are perpendicular, then $\mathbf{b}_{1} \cdot \mathbf{b}_{2}=0$.
If the lines are parallel, then \mathbf{b}_{1} and \mathbf{b}_{2} are parallel, therefore $\mathbf{b}_{1}=\lambda \mathbf{b}_{2}$ for some scalar λ

