Straight line in Space.

Every equation of the first degree represents a plane. Two equations of the first degree are satisfied by the co-ordinates of every point on the line of intersection of the planes represented by them. Therefore, the two equations together represent that line. Therefore $a x+b y+c z+d=0$ and $a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$ together represent a straight line.
(1) Equation of a line passing through a given point
(i) Cartesian form or symmetrical form:Cartesian equation of a straight line passing through a fixed point (x_{1}, y_{1}, z_{1}) and having direction ratios $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$.
(ii) Vector form:Vector equation of a straight line passing through a fixed point with position vector \mathbf{a} and parallel to a given vector bis $\mathbf{r}=\mathbf{a}+\lambda \mathbf{b}$.

Important Tips

© The parametric equations of the line $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ are $x=x_{1}+a \lambda, y=y_{1}+b \lambda, z=z_{1}+c \lambda$, where λ is the parameter.
σ The co-ordinates of any point on the line $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ are $\left(x_{1}+a \lambda, y_{1}+b \lambda, z_{1}+c \lambda\right)$, where $\lambda \in R$.

- Since the direction cosines of a line are also direction ratios, therefore equation of a line passing through ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and having direction cosines $\mathrm{I}, \mathrm{m}, \mathrm{n}$ is $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$.
- Since x, y and z-axes pass through the origin and have direction cosines $1,0,0 ; 0,1,0$ and $0,0,1$ respectively. Therefore, the equations are x -axis : $\frac{x-0}{1}=\frac{y-0}{0}=\frac{z-0}{0}$ or $\mathrm{y}=0$ and z $=0$.
y-axis : $\frac{x-0}{0}=\frac{y-0}{1}=\frac{z-0}{0}$ or $\mathrm{x}=0$ and $\mathrm{z}=0$; z -axis : $\frac{x-0}{0}=\frac{y-0}{0}=\frac{z-0}{1}$ or $\mathrm{x}=0$ and $\mathrm{y}=0$.
In the symmetrical form of equation of a line, the coefficients of x, y, z are unity.

