Relation between Three Systems of Measurement of an Angle.

Let D be the number of degrees, R be the number of radians and G be the number of grades in an angle θ.
Now, $\quad 90^{\circ}=1$ right angle $\quad \Rightarrow 1^{\circ}=\frac{1}{90}$ right angle
$\Rightarrow \quad D^{o}=\frac{D}{90}$ right angles $\quad \Rightarrow \theta=\frac{D}{90}$ right angles

Again, π radians $=2$ right angles $\quad \Rightarrow 1$ radian $=\frac{2}{\pi}$ right angles
$\Rightarrow \quad \mathrm{R}$ radians $=\frac{2 R}{\pi}$ right angles $\quad \Rightarrow \theta=\frac{2 R}{\pi}$ right angles
$\begin{array}{ll}\text { and } & 100 \text { grades }=1 \text { right angle } \\ \Rightarrow \quad G \text { grades }=\frac{G}{100} \text { right angles } & \Rightarrow \theta=\frac{G}{100} \text { right angles }=\frac{1}{100} \text { right angle } \\ \Rightarrow & \end{array}$

$$
\frac{D}{90}=\frac{G}{100}=\frac{2 R}{\pi}
$$

This is the required relation between the three systems of measurement of an angle.

Note: One radian $=\frac{180^{\circ}}{\pi} \Rightarrow \pi$ radians $=180^{\circ} \Rightarrow 1$ radian $=57^{\circ} 17^{\prime} 44.8^{\prime \prime} \approx 57^{\circ} 17^{\prime} 45^{\prime \prime}$.

