Trigonometrical Ratios or Functions.

In the right angled triangle $O M P$, we have base $=O M=x$, perpendicular $=P M=y$ and hypotenuse $=\mathrm{OP}=\mathrm{r}$. We define the following trigonometric ratio which are also known as trigonometric function.

$$
\begin{aligned}
& \sin \theta=\frac{\text { Perpendicu lar }}{\text { Hypotenues }}=\frac{y}{r} \cos \theta=\frac{\text { Base }}{\text { Hypotenues }}=\frac{x}{r} \\
& \tan \theta=\frac{\text { Perpendicu lar }}{\text { Base }}=\frac{y}{x} \quad \cot \theta=\frac{\text { Base }}{\text { Perpendicu lar }}=\frac{x}{y}, \\
& \sec \theta=\frac{\text { Hypotenues }}{\text { Base }}=\frac{r}{x} \quad \operatorname{cosec} \theta=\frac{\text { Hypotenues }}{\text { Perpendicu lar }}=\frac{r}{y}
\end{aligned}
$$

(1) Relation between trigonometric ratios (function)
(i) $\sin \theta \cdot \operatorname{cosec} \theta=1$
(ii) $\tan \theta \cdot \cot \theta=1$
(iii) $\cos \theta \cdot \sec \theta=1$
(iv) $\tan \theta=\frac{\sin \theta}{\cos \theta}$
(v) $\cot \theta=\frac{\cos \theta}{\sin \theta}$
(2) Fundamental trigonometric identities
(i) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(ii) $1+\tan ^{2} \theta=\sec ^{2} \theta$
(iii) $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

Important Tips
If $x=\sec \theta+\tan \theta$, then $\frac{1}{x}=\sec \theta-\tan \theta$.

- If $x=\operatorname{coesc} \theta+\cot \theta$, then $\frac{1}{x}=\operatorname{cosec} \theta-\cot \theta$.
(3) Sign of trigonometrical ratios or functions:Their signs depends on the quadrant in which the terminal side of the angle lies.
(i) In first quadrant: $x>0, y>0 \Rightarrow \sin \theta=\frac{y}{r}>0, \cos \theta=\frac{x}{r}>0, \tan \theta=\frac{y}{x}>0, \operatorname{cosec} \theta=\frac{r}{y}>0$, $\sec \theta=\frac{r}{x}>0$ and $\cot \theta=\frac{x}{y}>0$. Thus, in the first quadrant all trigonometric functions are positive.
(ii) In second quadrant: $x<0, y>0 \Rightarrow \sin \theta=\frac{y}{r}>0, \cos \theta=\frac{x}{r}<0, \tan \theta=\frac{y}{x}<0, \operatorname{cosec} \theta=\frac{r}{y}>0$, $\sec \theta=\frac{r}{x}<0$ and $\cot \theta=\frac{x}{y}<0$. Thus, in the second quadrant \sin and cosec function are positive and all others are negative.
(iii) In third quadrant: $x<0, y<0 \Rightarrow \sin \theta=\frac{y}{r}<0, \cos \theta=\frac{x}{r}<0, \tan \theta=\frac{y}{x}>0, \operatorname{cosec} \theta=\frac{r}{y}<0$, $\sec \theta=\frac{r}{x}<0$ and $\cot \theta=\frac{x}{y}>0$. Thus, in the third quadrant all trigonometric functions are negative except tangent and cotangent.
(iv) In fourth quadrant: $x>0, y<0 \Rightarrow \sin \theta=\frac{y}{r}<0, \cos \theta=\frac{x}{r}>0$, $\tan \theta=\frac{y}{x}<0, \operatorname{cosec} \theta=\frac{r}{y}<0, \sec \theta=\frac{r}{x}>0$ and $\cot \theta=\frac{x}{y}<0$ Thus, in the fourth quadrant all trigonometric functions are negative except cos and sec.
In brief : A crude aid to memorise the signs of trigonometrical ratio in different quadrant. "Add Sugar To Coffee".

$\bigodot_{\substack{x<0, y>0 \\ \text { sin and cosec }}}^{\substack{\text { II }}}$	I auadrant (A) $x>0, y>0$ All nmenneitivon
III auadrant 0 T $x<0, y<0$ tan and cot	IV quadrant (c) $x>0, y<0$ cos and sec

Important Tips

First determine the sign of the trigonometric function.
(If θ is measured from $X^{\prime} O X$ i.e., $\{(\pi \pm \theta, 2 \pi-\theta)\}$ then retain the original name of the function.
If θ is measured from $Y^{\prime} O Y$ i.e., $\left\{\frac{\pi}{2} \pm \theta, \frac{3 \pi}{2} \pm \theta\right\}$, then change sine to cosine, cosine to sine, tangent to cotangent, cot to tan, sec to cosec and cosec to sec.
(4) Variations in values of trigonometric functions in different quadrants: Let $X^{\prime} O X$ and YOY' be the coordinate axes. Draw a circle with center at origin O and radius unity.

Let $M(x, y)$ be a point on the circle such that $\angle A O M=\theta$ then $x=\cos \theta$ and $y=\sin \theta ;-1 \leq \cos \theta \leq 1$ and $-1 \leq \sin \theta \leq 1$ for all values of θ.

II-Quadrant (S)	I-Quadrant (A)
$\sin \theta \rightarrow$ decreases from 1 to 0	$\sin \theta \rightarrow$ increases from
	0 to 1
$\cos \theta \rightarrow$ decreases from 0 to -1	$\cos \theta \rightarrow$ decreases from

	1 to 0
$\tan \theta \rightarrow$ increases from $-\infty$ to 0	$\tan \theta \rightarrow$ increases from 0 to ∞
$\cot \theta \rightarrow$ decreases from 0 to $-\infty$	$\cot \theta \rightarrow$ decreases from ∞ to 0
$\sec \theta \rightarrow$ increases from $-\infty$ to - 1	$\sec \theta \rightarrow$ increases from 1 to ∞
$\operatorname{cosec} \theta \rightarrow$ increases from 1 to ∞	$\operatorname{cosec} \theta \rightarrow$ decreases from ∞ to 1
III-Quadrant (T)	IV-Quadrant (C)
$\sin \theta \rightarrow$ decreases from 0 to -1	$\sin \theta \rightarrow$ increases from 1 to 0
$\cos \theta \rightarrow$ increases from - 1 to 0	$\cos \theta \rightarrow$ increases from 0 to 1
$\tan \theta \rightarrow$ increases from 0 to ∞	$\tan \theta \rightarrow$ increases from ∞ to 0
$\cot \theta \rightarrow$ decreases from ∞ to 0	$\cot \theta \rightarrow$ decreases from 0 to $-\infty$
$\sec \theta \rightarrow$ decreases from - 1 to $-\infty$	$\sec \theta \rightarrow$ decreases from ∞ to 1
$\operatorname{cosec} \theta \rightarrow$ increases from - ∞ to - 1	$\operatorname{cosec} \theta \rightarrow$ decreases from -1 to ∞

Note: $+\infty$ and $-\infty$ are two symbols. These are not real number. When we say that tan θ increases from 0 to ∞ for as θ variesfrom 0 to $\frac{\pi}{2}$ it means that $\tan \theta$ increases in the interval $\left(0, \frac{\pi}{2}\right)$ and it attains large positive values as θ tends to $\frac{\pi}{2}$. Similarly for other trigonometric functions.

