Periodic Functions.

A function $\mathrm{f}(\mathrm{x})$ is called periodic function if there exists a least positive real number T such that $f(x+T)=f(x)$. T is called the period (or fundamental period) of function $f(x)$. Obviously, if T is the period of $f(x)$, then $f(x)=f(x+T)=f(x+2 T)=f(x+3 T)=$ \qquad ..
(i) If $f_{1}(x)$ and $f_{2}(x)$ are two periodic functions of x having the same period T , then the function $a f_{1}(x)+b f_{2}(x)$ where a and b are any numbers, is also a periodic function having the same period T .
(ii) If T is the period of the periodic function $f(x)$, then the function $f(a x+b)$, where $a(>0)$ and b are any numbers is also a periodic function with period equal to T / a.
(iii) If T_{1} and T_{2} are the periods of periodic functions $f_{1}(x)$ and $f_{2}(x)$ respectively, then the function $a f_{1}(x)+b f_{2}(x)$, where a and b are any numbers is also periodic and its period is T which is the L.C.M. of T_{1} and T_{2} i.e. T is the least positive number which is divisible by T_{1} and T_{2}.

All trigonometric functions are periodic. The period of trigonometric function $\sin x, \cos x, \sec x$ and $\operatorname{cosec} x$ is 2π because $\sin (x+2 \pi)=\sin x, \cos (x+2 \pi)=\cos x$ etc.

The period of $\tan x$ and $\cot x$ is π because $\tan (x+\pi)=\tan x$ and $\cot (x+\pi)=\cot x$ The period of the function which are of the type: $\sin a x, \cos (a x+b) ; b \cos a x$ is $\frac{2 \pi}{a}$

The period of $\tan a x$ and $\cot a x$ is $\frac{\pi}{|a|}$. Here $|a|$ is taken so as the value of the period is positive real number.

Some functions with their periods

Function	Period
$\sin (a x+b), \cos (a x+b), \sec (a x+b), \operatorname{cosec}(a x+b)$	$2 \pi / a$
$\tan (a x+b), \cot (a x+b)$	π / a
$\|\sin (a x+b)\|,\|\cos (a x+b)\|,\|\sec (a x+b)\|,\|\operatorname{cosec}(a x+b)\|$	π / a
$\|\tan (a x+b)\|,\|\cot (a x+b)\|$	π / a

