Periodic Functions.

A function f(x) is called periodic function if there exists a least positive real number T such that f(x + T) = f(x). T is called the period (or fundamental period) of function f(x). Obviously, if T is the period of f(x), then $f(x) = f(x + T) = f(x + 2T) = f(x + 3T) = \dots \dots$

(i) If $f_1(x)$ and $f_2(x)$ are two periodic functions of x having the same period T, then the function $af_1(x) + bf_2(x)$ where a and b are any numbers, is also a periodic function having the same period T.

(ii) If T is the period of the periodic function f(x), then the function f(ax + b), where a(> 0) and b are any numbers is also a periodic function with period equal to T/a.

(iii) If T_1 and T_2 are the periods of periodic functions $f_1(x)$ and $f_2(x)$ respectively, then the function $af_1(x) + bf_2(x)$, where a and b are any numbers is also periodic and its period is T which is the L.C.M. of T_1 and T_2 i.e. T is the least positive number which is divisible by T_1 and T_2 .

All trigonometric functions are periodic. The period of trigonometric function $\sin x$, $\cos x$, $\sec x$ and $\csc x$ is 2π because $\sin(x + 2\pi) = \sin x$, $\cos(x + 2\pi) = \cos x$ etc.

The period of $\tan x$ and $\cot x$ is π because $\tan(x + \pi) = \tan x$ and $\cot(x + \pi) = \cot x$ The period of the function which are of the type: $\sin ax$, $\cos(ax + b)$; $b \cos ax$ is $\frac{2\pi}{\pi}$

The period of tan ax and cot ax is $\frac{\pi}{|a|}$. Here |a| is taken so as the value of the period is positive

real number.

Some functions with their periods

Function	Period
$\sin(ax + b), \cos(ax + b), \sec(ax + b), \csc(ax + b)$	$2\pi/a$
$\tan(ax+b), \cot(ax+b)$	π / a
$ \sin(ax+b) , \cos(ax+b) , \sec(ax+b) , \csc(ax+b) $	π / a
$ \tan(ax+b) , \cot(ax+b) $	π / a