General Solution of Standard Trigonometrical Equations.

(1) General solution of the equation $\sin \theta = \sin \alpha$: If $\sin \theta = \sin \alpha$ or $\sin \theta - \sin \alpha = 0$

or, $\frac{\theta - \alpha}{2} = m \pi; m \in I$ or $\frac{\theta + \alpha}{2} = (2m + 1)\frac{\pi}{2}; m \in I$ $\Rightarrow \theta = 2m \pi + \alpha; m \in I \text{ or } \theta = (2m + 1)\pi - \alpha; m \in I$ $\Rightarrow \theta = (\text{any even multiple of } \pi) + \alpha \text{ or } \theta = (\text{any odd multiple of } \pi) - \alpha$ $\overline{\theta = n\pi + (-1)^n \alpha ; n \in I}$

Note: The equation $\csc \theta = \csc \alpha$ is equivalent to $\sin \theta = \sin \alpha$. So these two equation having the same general solution.

(2) General solution of the equation $\cos\theta = \cos\alpha$: If $\cos\theta = \cos\alpha \Rightarrow \cos\theta - \cos\alpha = 0 \Rightarrow$ $-2\sin\left(\frac{\theta+\alpha}{2}\right) \cdot \sin\left(\frac{\theta-\alpha}{2}\right) = 0 \Rightarrow \sin\left(\frac{\theta+\alpha}{2}\right) = 0 \text{ or } \sin\left(\frac{\theta-\alpha}{2}\right) = 0, \Rightarrow \frac{\theta+\alpha}{2} = n\pi; n \in I \text{ or }$ $\frac{\theta-\alpha}{2} = n\pi; n \in I$

 $\Rightarrow \theta = 2n\pi - \alpha; n \in I \text{ or } \theta = 2n\pi + \alpha; n \in I. \text{ for the general solution of } \cos \theta = \cos \alpha \text{ , combine these two result which gives } \boxed{\theta = 2n\pi \pm \alpha; n \in I}$

Note: The equation $\sec \theta = \sec \alpha$ is equivalent to $\cos \theta = \cos \alpha$, so the general solution of these two equations are same.

(3) General solution of the equation $\tan \theta = \tan \alpha$: If $\tan \theta = \tan \alpha \Rightarrow \frac{\sin \theta}{\cos \theta} = \frac{\sin \alpha}{\cos \alpha}$ $\Rightarrow \sin \theta \cos \alpha - \cos \theta \sin \alpha = 0 \Rightarrow \sin(\theta - \alpha) = 0 \Rightarrow \theta - \alpha = n\pi; n \in I \quad \theta = n\pi + \alpha; n \in I$

Note: The equation $\cot \theta = \cot \alpha$ is equivalent to $\tan \theta = \tan \alpha$ so these two equations having the same general solution.