General Solution of Some Particular Equations.

$$
\begin{equation*}
\sin \theta=0 \Rightarrow \theta=n \pi, \quad \cos \theta=0 \Rightarrow \theta=(2 n+1) \frac{\pi}{2} \text { or } n \pi+\frac{\pi}{2}, \quad \tan \theta=0 \Rightarrow \theta=n \pi \tag{1}
\end{equation*}
$$

(2) $\sin \theta=1 \Rightarrow \theta=(4 n+1) \frac{\pi}{2}$ or $2 n \pi+\frac{\pi}{2}, \cos \theta=1 \Rightarrow \theta=2 n \pi, \tan \theta=1 \Rightarrow \theta=(4 n+1) \frac{\pi}{4}$ or $n \pi+\frac{\pi}{4}$
(3) $\sin \theta=-1 \Rightarrow \theta=(4 n+3) \frac{\pi}{2}$ or $2 n \pi+\frac{3 \pi}{2}, \cos \theta=-1 \Rightarrow \theta=(2 n+1) \pi, \tan \theta=-1 \Rightarrow$ $\theta=(4 n-1) \frac{\pi}{4}$ or $n \pi-\frac{\pi}{4}$
(4) $\tan \theta=$ not defined $\Rightarrow \theta=(2 n+1) \frac{\pi}{2}, \quad \cot \theta=$ not defined $\Rightarrow \theta=n \pi$ $\operatorname{cosec} \theta=$ not defined $\Rightarrow \theta=n \pi, \quad \sec \theta=$ not defined $\Rightarrow \theta=(2 n+1) \frac{\pi}{2}$.

Important Tips

For equations involving two multiple angles, use multiple and sub-multiple angle formulas, if necessary.

For equations involving more than two multiple angles (i) Apply $C \pm D$ formula to combine the two.(ii) Choose such pairs of multiple angle so that after applying the above formulae we get a common factor in the equation.

