Some Particular Equations.

(1) Equation of the form $\boldsymbol{a}_{0} \sin ^{n} \boldsymbol{x}+\boldsymbol{a}_{1} \sin ^{n-1} \boldsymbol{x} \boldsymbol{\operatorname { c o s }} \boldsymbol{x}+\boldsymbol{a}_{2} \sin ^{n-2} \boldsymbol{x} \boldsymbol{\operatorname { c o s }}{ }^{2} \boldsymbol{x}+\ldots .+\boldsymbol{a}_{\mathrm{n}} \cos ^{n} \boldsymbol{x}=\mathbf{0}$:

Here $a_{0}, a_{1} \ldots, a_{n}$ are real numbers and the sum of the exponents in $\sin x$ and $\cos x$ in each term is equal to n, are said to be homogeneous with respect to $\sin x$ and $\cos x$. For $\cos x \neq 0$, above equation can be written as, $a_{0} \tan ^{n} x+a_{1} \tan ^{n-1} x+\ldots+a_{n}=0$.
(2) A trigonometric equation of the form $\boldsymbol{R}(\boldsymbol{\operatorname { s i n }} \boldsymbol{k} \boldsymbol{x}, \boldsymbol{\operatorname { c o s }} \boldsymbol{n} \boldsymbol{x}, \boldsymbol{\operatorname { t a n }} \boldsymbol{m} \boldsymbol{x}, \boldsymbol{\operatorname { c o t } \boldsymbol { l } \boldsymbol { x }) = \mathbf { 0 } : \text { Here } \mathrm { R } \text { is a }}$ rational function of the indicated arguments and (k, I, m, n are natural numbers) can be reduced to a rational equation with respect to the arguments $\sin x, \cos x, \tan x$, and $\cot x$ by means of the formulae for trigonometric functions of the sum of angles (in particular, the formulas for double and triple angles) and then reduce equation of the given form to a rational equation with respect to the unknown, $t=\tan \frac{x}{2}$ by means of the formulas,
$\sin x=\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}, \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$,
(3) Equation of the form $\boldsymbol{R}(\sin \boldsymbol{x}+\cos \boldsymbol{x}, \sin \boldsymbol{x} \cdot \boldsymbol{\operatorname { c o s }} \boldsymbol{x})=\mathbf{0}$: where R is rational function of the arguments in brackets, Put $\sin x+\cos x=t \quad$........(i) and use the following identity:
$(\sin x+\cos x)^{2}=\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x=1+2 \sin x \cos x \Rightarrow \sin x \cos x=\frac{t^{2}-1}{2}$
Taking (i) and (ii) into account, we can reduce given equation into; $R\left(t, \frac{t^{2}-1}{2}\right)=0$.
Similarly, by the substitution $(\sin x-\cos x)=t$, we can reduce the equation of the form;
$R(\sin x-\cos x, \sin x \cos x)=0$ to an equation; $R\left(t, \frac{1-t^{2}}{2}\right)=0$.

