Important Points to be taken in Case of While Solving Trigonometrical Equations.

(1)Check the validity of the given equation, e.g., $2\sin\theta - \cos\theta = 4$ can never be true for any θ as the value $(2\sin\theta - \cos\theta)$ can never exceeds $\sqrt{2^2 + (-1)^2} = \sqrt{5}$. So there is no solution to this equation.

(2) Equation involving $\sec \theta$ or $\tan \theta$ can never have a solution of the form. $(2n+1)\frac{\pi}{2}$

Similarly, equations involving $\csc \theta$ or $\cot \theta$ can never have a solution of the form $\theta = n\pi$. The corresponding functions are undefined at these values of θ .

(3) If while solving an equation we have to square it, then the roots found after squaring must be checked whether they satisfy the original equation or not, e.g., Let x = 3. Squaring, we get $x^2 = 9$ $\therefore x = 3$ and -3 but x = -3 does not satisfy the original equation x = 3. e.g., $\sin x + \cos x = 1$ Square both sides, we get $1 + \sin 2x = 1$ $\therefore \sin 2x = 0$ $\therefore 2x = n\pi$ or $x = \frac{n\pi}{2}$, $n \in I$

:. Roots are,
$$\frac{-3\pi}{2}, \frac{-2\pi}{2}, \frac{-\pi}{2}, 0, \frac{\pi}{2}, \frac{2\pi}{2}, \frac{3\pi}{2}, \dots$$

We find that 0 and $\pi/2$ are roots but π and $3\pi/2$ do not satisfy the given equation as it leads to -1 = 1

Similarly 0 and $\frac{-3\pi}{2}$ are roots but $-\frac{\pi}{2}$ and $-\pi$ are not roots as it will lead to -1 = 1. As stated above, because of squaring we are solving the equations $\sin x + \cos x = 1$ and $\sin x + \cos x = -1$ both. The rejected roots are for $\sin x + \cos x = -1$.

(4) Do not cancel common factors involving the unknown angle on L.H.S. and R.H.S. because it may delete some solutions. e.g., In the equation $\sin \theta (2 \cos \theta - 1) = \sin \theta \cos^2 \theta$ if we cancel $\sin \theta$ on both sides we get $\cos^2 \theta - 2 \cos \theta + 1 = 0 \Rightarrow (\cos \theta - 1)^2 = 0 \Rightarrow \cos \theta = 1 \Rightarrow \theta = 2n\pi$. But $\theta = n\pi$ also satisfies the equation because it makes $\sin \theta = 0$. So, the complete solution is $\theta = n\pi, n \in \mathbb{Z}$.

(5) Any value of x which makes both R.H.S. and L.H.S. equal will be a root but the value of x for which $\infty = \infty$ will not be a solution as it is an indeterminate form.

Hence, $\cos x \neq 0$ for those equations which involve $\tan x$ and $\sec x$ whereas $\sin x \neq 0$ for those which involve $\cot x$ and $\csc x$.

Also exponential function is always +ve and $\log_a x$ is defined if x > 0, $x \neq 0$ and $a > 0, a \neq 1$ $\sqrt{f(x)} = +ve$ always and not $\pm i.e.$ $\sqrt{(\tan^2 x)} = \tan x$ and not $\pm \tan x$.

(6) Denominator terms of the equation if present should never become zero at any stage while solving for any value of θ contained in the answer.

(7) Sometimes the equation has some limitations also e.g., $\cot^2 \theta + \csc^2 \theta = 1$ can be true only if $\cot^2 \theta = 0$ and $\csc^2 \theta = 1$ simultaneously as $\csc^2 \theta \ge 1$. Hence the solution is $\theta = (2n+1)\pi/2$.

(8) If xy = xz then $x(y-z) = 0 \Rightarrow$ either x = 0 or y = z or both. But $\frac{y}{x} = \frac{z}{x} \Rightarrow y = z$ only and not x = 0, as it will make $\infty = \infty$. Similarly if ay = az, then it will also imply y = z only as $a \neq 0$ being a constant.

Similarly $x + y = x + z \Rightarrow y = z$ and $x - y = x - z \Rightarrow y = z$. Here we do not take x = 0 as in the above because x is an additive factor and not multiplicative factor.

When $\cos \theta = 0$, then $\sin \theta = 1$ or -1. We have to verify which value of $\sin \theta$ is to be chosen which satisfies the equation. $\cos \theta = 0 \Rightarrow \theta = \left(n + \frac{1}{2}\right)\pi$.

(9) Student are advised to check whether all the roots obtained by them, satisfy the equation and lie in the domain of the variable of the given equation.