Some Important Results.

(11) $A P=a \sin \gamma \cdot \operatorname{cosec}(\alpha-\gamma)$
$A Q=a \sin \delta \cdot \operatorname{cosec}(\beta-\delta)$
and apply,
$P Q^{2}=A P^{2}+A Q^{2}-2 A P \cdot A Q \cos \theta$

Important Tips

In the application of sine rule, the following point be noted. We are given one side a and some other side x is to be found. Both these are in different triangles. We choose a common side y of these triangles. Then apply sine rule for a and y in one triangle and for x and y for the other triangle and eliminate y. Thus, we will get unknown side x in terms of a. In the adjoining figure a is known side of $\triangle A B C$ and x is unknown is side of triangle $A C D$. The common side of these triangle is $A C=y$ (say) Now apply sine rule

$$
\begin{equation*}
\therefore \quad \frac{a}{\sin \alpha}=\frac{y}{\sin \beta} \ldots \ldots . \text { (i) } \quad \text { and } \frac{x}{\sin \theta}=\frac{y}{\sin \gamma} \tag{ii}
\end{equation*}
$$

Dividing (ii) by (i) we get, $\frac{x \sin \alpha}{a \sin \theta}=\frac{\sin \beta}{\sin \gamma} ; \quad \therefore \quad x=\frac{a \sin \beta \sin \theta}{\sin \alpha \sin \gamma}$

