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Important Tips 

 In the application of sine rule, the following point be noted. We are given one side a and 
some other side x is to be found. Both these are in different triangles. We 
choose a common side y of these triangles. Then apply sine rule for a and y 
in one triangle and for x and y for the other triangle and eliminate y. Thus, 
we will get unknown side x in terms of a. In the adjoining figure a is known 
side of  ABC and x is unknown is side of triangle ACD. The common side of 
these triangle is AC = y (say) Now apply sine rule 
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