Definition.

We know that parametric co-ordinates of any point on the unit circle $x^{2}+y^{2}=1$ is $(\cos \theta, \sin \theta)$; so that these functions are called circular functions and co-ordinates of any point on unit hyperbola $x^{2}-y^{2}=1$ is $\left(\frac{e^{\theta}+e^{-\theta}}{2}, \frac{e^{\theta}-e^{-\theta}}{2}\right)$ i.e., $(\cosh \theta, \sinh \theta)$. It means that the relation which exists amongst $\cos \theta, \sin \theta$ and unit circle, that relation also exist amongst $\cosh \theta, \sinh \theta$ and unit hyperbola. Because of this reason these functions are called as Hyperbolic functions. For any (real or complex) variable quantity x ,
(1) $\sinh x=\frac{e^{x}-e^{-x}}{2}$ [Read as 'hyperbolic sine $\left.x^{\prime}\right]$
(2) $\cosh x=\frac{e^{x}+e^{-x}}{2}$ [Read as 'hyperbolic cosine $\left.x^{\prime}\right]$
(3) $\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
(4) $\operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$
(5) $\operatorname{cosech} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}$
(6) $\sec \mathrm{h} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$

Note: $\sinh 0=0, \cosh 0=1, \tanh 0=0$

