Inverse Hyperbolic Functions.

If $\sinh y = x$, then y is called the inverse hyperbolic sine of x and it is written as $y = \sinh^{-1} x$. Similarly $cosech^{-1}x, cosh^{-1}x, tanh^{-1}x$ etc. can be defined.

Function	Domain	Range
$\sinh^{-1} x$	R	R
$\cosh^{-1} x$	[1, ∞)	R
$\tanh^{-1} x$	(-1,1)	R
$\operatorname{coth}^{-1} x$	R – [–1, 1]	R ₀
$\operatorname{sech}^{-1} x$	(0, 1]	R
$\operatorname{cosech}^{-1} x$	R ₀	R ₀

(1) Domain and range of Inverse hyperbolic function

(2) Relation between inverse hyperbolic function and inverse circular function

Method: Let $\sinh^{-1} x = y$

$$\Rightarrow \qquad x = \sinh y = -i\sin(iy) \Rightarrow ix = \sin(iy) \Rightarrow iy = \sin^{-1}(ix)$$

$$\Rightarrow y = -i\sin^{-1}(ix) \Rightarrow \sinh^{-1} x = -i\sin^{-1}(ix)$$

Therefore we get the following relations

(i) $\sinh^{-1} x = -i \sin^{-1}(ix)$ (ii) $\cosh^{-1} x = -i \cos^{-1} x$ (iii) $\tanh^{-1} x = -i \tan^{-1}(ix)$ (iv) $\sec h^{-1} x = -i \sec^{-1} x$ (v) $\csc h^{-1} x = i \csc^{-1}(ix)$

(3) To express any one inverse hyperbolic function in terms of the other inverse hyperbolic functions

To express $\sinh^{-1} x$ in terms of the others

(i) Let
$$\sinh^{-1} x = y \Rightarrow x = \sinh y \Rightarrow \operatorname{cosech} y = \frac{1}{x} \Rightarrow y = \operatorname{cosec}^{-1}\left(\frac{1}{x}\right)$$

(ii)
$$\because \cosh y = \sqrt{1 + \sinh^2 y} = \sqrt{1 + x^2}$$

 $\because y = \cosh^{-1} \sqrt{1 + x^2} \Rightarrow \sinh^{-1} x = \cosh^{-1} \sqrt{1 + x^2}$
(iii) $\because \tanh y = \frac{\sinh y}{\cosh y} = \frac{\sinh y}{\sqrt{1 + \sinh^2 y}} = \frac{x}{\sqrt{1 + x^2}}$
 $\therefore y = \tanh^{-1} \frac{x}{\sqrt{1 + x^2}} \Rightarrow \sinh^{-1} x = \tanh^{-1} \frac{x}{\sqrt{1 + x^2}}$
(iv) $\because \coth y = \frac{\sqrt{1 + \sinh^2 y}}{\sinh y} = \frac{\sqrt{1 + x^2}}{x}$

$$\therefore y = \coth^{-1} \frac{\sqrt{1+x^2}}{x} \implies \sinh^{-1} x = \coth^{-1} \frac{\sqrt{1+x^2}}{x}$$

(v) ::
$$\operatorname{sec} hy = \frac{1}{\cosh y} = \frac{1}{\sqrt{1 + \sinh^2 y}} = \frac{1}{\sqrt{1 + x^2}}$$

$$y = \operatorname{sec} h^{-1} \frac{1}{\sqrt{1 + x^2}} \Longrightarrow \sinh^{-1} x = \operatorname{sec} h^{-1} \frac{1}{\sqrt{1 + x^2}}$$

(vi) Also, $\sinh^{-1} x = \operatorname{cosech}^{-1} \left(\frac{1}{x}\right)$

From the above, it is clear that

$$\operatorname{coth}^{-1} x = \tanh^{-1}\left(\frac{1}{x}\right)$$
$$\operatorname{sec} h^{-1} x = \cosh^{-1}\left(\frac{1}{x}\right)$$
$$\operatorname{cosech}^{-1} = \sinh^{-1}\left(\frac{1}{x}\right)$$

Note: If x is real then all the above six inverse functions are single valued.

(4) Relation between inverse hyperbolic functions and logarithmic functions Method:

Let
$$\sinh^{-1} x = y$$

$$\Rightarrow x = \sinh y = \frac{e^{y} - e^{-y}}{2} \Rightarrow e^{2y} - 2xe^{y} - 1 = 0 \Rightarrow e^{y} = \frac{2x \pm \sqrt{4x^{2} + 4}}{2} = x \pm \sqrt{x^{2} + 1}$$
But $e^{y} > 0, \forall y$ and $x < \sqrt{x^{2} + 1}$

$$\therefore e^{y} = x + \sqrt{x^{2} + 1} \Rightarrow y = \log(x + \sqrt{x^{2} + 1})$$

$$\therefore \sinh^{-1} x = \log(x + \sqrt{x^{2} + 1})$$

By the above method we can obtain the following relations between inverse hyperbolic functions and principal values of logarithmic functions.

(i)
$$\sinh^{-1} x = \log(x + \sqrt{x^2 + 1})$$
 $(-\infty < x < \infty)$

(ii)
$$\cosh^{-1} x = \log(x + \sqrt{x^2 - 1})$$
 $(x \ge 1)$

(iii)
$$\tanh^{-1} x = \frac{1}{2} \log \left(\frac{1+x}{1-x} \right) \qquad |x| < 1$$

(iv)
$$\operatorname{coth}^{-1} x = \frac{1}{2} \log \left(\frac{x+1}{x-1} \right)$$
 | $x | > 1$
(v) $\operatorname{sec} \operatorname{h}^{-1} x = \log \left(\frac{1+\sqrt{1-x^2}}{x} \right)$ $0 < x \le 1$
(vi) $\operatorname{cosech}^{-1} x = \log \left(\frac{1+\sqrt{1+x^2}}{x} \right)$ $(x \ne 0)$

Note: Formulae for values of $\operatorname{cosech}^{-1} x$, $\operatorname{sec} \operatorname{h}^{-1} x$ and $\operatorname{coth}^{-1} x$ may be obtained by replacing x by $\frac{1}{x}$ in the values of $\sinh^{-1} x$, $\cosh^{-1} x$ and $\tanh^{-1} x$ respectively.