Classical definition of Probability.

If a random experiment results in n mutually exclusive, equally likely and exhaustive outcomes, out of which m are favorable to the occurrence of an event A, then the probability of occurrence of A is given by
$P(A)=\frac{m}{n}=\frac{\text { Number of outcomes favourable to } A}{\text { Number of total outcomes }}$
It is obvious that $0 \leq m \leq n$. If an event A is certain to happen, then $m=n$, thus $P(A)=1$.
If A is impossible to happen, then $m=0$ and so $P(A)=0$. Hence we conclude that

$$
0 \leq P(A) \leq 1 .
$$

Further, if \bar{A} denotes negative of A i.e. event that A doesn't happen, then for above cases m, n; we shall have
$P(\bar{A})=\frac{n-m}{n}=1-\frac{m}{n}=1-P(A)$
$\therefore \quad P(A)+P(\bar{A})=1$.

Notations:For two events A and B,
(i) A^{\prime} or \bar{A} or A^{C} stands for the non-occurrence or negation of A .
(ii) $A \cup B$ stands for the occurrence of at least one of A and B.
(iii) $A \cap B$ stands for the simultaneous occurrence of A and B.
(iv) $A^{\prime} \cap B^{\prime}$ stands for the non-occurrence of both A and B.
(v) $A \subseteq B$ stands for "the occurrence of A implies occurrence of B ".

