Addition Theorems on Probability

Notations: (i) $P(A+B)$ or $P(A \cup B)=$ Probability of happening of A or B
$=$ Probability of happening of the events A or B or both
$=$ Probability of occurrence of at least one event A or B
(ii) $P(A B)$ or $P(A \cap B) \quad=$ Probability of happening of events A and B
together.
(1) When events are not mutually exclusive:If A and B are two events which are not mutually exclusive, then $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ or $P(A+B)=P(A)+P(B)-P(A B)$.

For any three events $\mathrm{A}, \mathrm{B}, \mathrm{C}$ $P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(C \cap A)+P(A \cap B \cap C)$ or $P(A+B+C)=P(A)+P(B)+P(C)-P(A B)-P(B C)-P(C A)+P(A B C)$.
(2) When events are mutually exclusive:If A and B are mutually exclusive events, then

$$
n(A \cap B)=0 \Rightarrow P(A \cap B)=0
$$

$$
\therefore P(A \cup B)=P(A)+P(B) .
$$

For any three events $\mathrm{A}, \mathrm{B}, \mathrm{C}$ which are mutually exclusive,

$$
P(A \cap B)=P(B \cap C)=P(C \cap A)=P(A \cap B \cap C)=0 \therefore P(A \cup B \cup C)=P(A)+P(B)+P(C) .
$$

The probability of happening of any one of several mutually exclusive events is equal to the sum of their probabilities, i.e. if $A_{1}, A_{2} \ldots . A_{n}$ are mutually exclusive events, then

$$
P\left(A_{1}+A_{2}+\ldots+A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots . .+P\left(A_{n}\right) \text { i.e. } P\left(\sum A_{i}\right)=\sum P\left(A_{i}\right) .
$$

(3) When events are independent:If A and B are independent events, then $P(A \cap B)=P(A) \cdot P(B)$
$\therefore P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)$.
(4) Some other theorems
(i) Let A and B be two events associated with a random experiment, then
(a) $P(\bar{A} \cap B)=P(B)-P(A \cap B)$
(b) $P(A \cap \bar{B})=P(A)-P(A \cap B)$

If $B \subset A$, then
(a) $P(A \cap \bar{B})=P(A)-P(B)$
(b) $P(B) \leq P(A)$

Similarly if $\mathrm{A} \subset \mathrm{B}$, then
(a) $(\bar{A} \cap B)=P(B)-P(A)$
(b) $P(A) \leq P(B)$.

Note: Probability of occurrence of neither A nor B is $P(\bar{A} \cap \bar{B})=P(\overline{A \cup B})=1-P(A \cup B)$.
(ii) Generalization of the addition theorem: If $A_{1}, A_{2}, \ldots \ldots, A_{n}$ are n events associated with a random experiment, then
$P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{\substack{i, j=1 \\ i \neq j}}^{n} P\left(A_{i} \cap A_{j}\right)+\sum_{\substack{i, j, k=1 \\ i \neq j \neq k}}^{n} P\left(A_{i} \cap A_{j} \cap A_{k}\right)+\ldots+(-1)^{n-1} P\left(A_{1} \cap A_{2} \cap \ldots . . \cap A_{n}\right)$. If all the events $A_{i}(i=1,2 \ldots, n)$ are mutually exclusive, then $P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$
i.e. $P\left(A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots .+P\left(A_{n}\right)$.
(iii) Booley'sinequality:If $A_{1}, A_{2}, \ldots . A_{n}$ are n events associated with a random experiment, then
(a) $P\left(\bigcap_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} P\left(A_{i}\right)-(n-1)$
(b) $P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)$

These results can be easily established by using the Principle of Mathematical Induction.
Important Tips
Let A, B, and C are three arbitrary events. Then

Verbal description of event	Equivalent Set Theoretic Notation
(i) Only A occurs	(i) $A \cap \bar{B} \cap \bar{C}$
(ii) Both A and B, but not C occur	(ii) $A \cap B \cap \bar{C}$
(iii) All the three events occur	(iii) $A \cap B \cap C$
(iv) At least one occurs	(iv) $A \cup B \cup C$
(v) At least two occur	(v) $(A \cap B) \cup(B \cap C) \cup(A \cap C)$

(vi) One and no more occurs	(vi) $(A \cap \bar{B} \cap \bar{C}) \cup(\bar{A} \cap B \cap \bar{C}) \cup(\bar{A} \cap \bar{B} \cap C)$
(vii) Exactly two of A, B and C occur	(vii) $(A \cap B \cap \bar{C}) \cup(\bar{A} \cap B \cap C) \cup(A \cap \bar{B} \cap C)$
(viii) None occurs	(viii) $\bar{A} \cap \bar{B} \cap \bar{C}=\overline{A \cup B \cup C}$
(ix) Not more than two occur	(ix) $(A \cap B) \cup(B \cap C) \cup(A \cap C)-(A \cap B \cap C)$
(x) Exactly one of A and B occurs	(x) $(A \cap \bar{B}) \cup(\bar{A} \cap B)$

