Conditional Probability.

Let A and B be two events associated with a random experiment. Then, the probability of occurrence of A under the condition that B has already occurred and $P(B) \neq 0$, is called the conditional probability and it is denoted by $\mathrm{P}(\mathrm{A} / \mathrm{B})$.
Thus, $\mathrm{P}(\mathrm{A} / \mathrm{B})=$ Probability of occurrence of A , given that B has already happened.
$=\frac{P(A \cap B)}{P(B)}=\frac{n(A \cap B)}{n(B)}$.

Similarly, $P(B / A)=$ Probability of occurrence of B, given that A has already happened.
$=\frac{P(A \cap B)}{P(A)}=\frac{n(A \cap B)}{n(A)}$.

Note: Sometimes, $P(A / B)$ is also used to denote the probability of occurrence of A when B occurs. Similarly, $P(B / A)$ is used to denote the probability of occurrence of B when A occurs.
(1) Multiplication theorems on probability
(i) If A and B are two events associated with a random experiment, then $P(A \cap B)=P(A) \cdot P(B / A)$, if $\mathrm{P}(\mathrm{A}) \neq 0$ or $P(A \cap B)=P(B) . P(A / B)$, if $\mathrm{P}(\mathrm{B}) \neq 0$.
(ii) Extension of multiplication theorem:If $A_{1}, A_{2}, \ldots, A_{n}$ are n events related to a random experiment, then
$P\left(A_{1} \cap A_{2} \cap A_{3} \cap \ldots . \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} / A_{1}\right) P\left(A_{3} / A_{1} \cap A_{2}\right) \ldots P\left(A_{n} / A_{1} \cap A_{2} \cap \ldots \cap A_{n-1}\right)$, Where $P\left(A_{i} / A_{1} \cap A_{2} \cap \ldots \cap A_{i-1}\right)$ represents the conditional probability of the event A_{i}, given that the events $A_{1}, A_{2}, \ldots . ., A_{i-1}$ have already happened.
(iii) Multiplication theorems for independent events:If A and B are independent events associated with a random experiment, then $P(A \cap B)=P(A) . P(B)$ i.e., the probability of simultaneous occurrence of two independent events is equal to the product of their probabilities.
By multiplication theorem, we have $P(A \cap B)=P(A) . P(B / A)$.
Since A and B are independent events, therefore $P(B / A)=P(B)$. Hence, $P(A \cap B)=P(A) . P(B)$.
(iv) Extension of multiplication theorem for independent events:If $A_{1}, A_{2}, \ldots, A_{n}$ are independent events associated with a random experiment, then

$$
P\left(A_{1} \cap A_{2} \cap A_{3} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \ldots P\left(A_{n}\right) .
$$

By multiplication theorem, we have
$P\left(A_{1} \cap A_{2} \cap A_{3} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2} / A_{1}\right) P\left(A_{3} / A_{1} \cap A_{2}\right) \ldots P\left(A_{n} / A_{1} \cap A_{2} \cap \ldots \cap A_{n-1}\right)$
Since $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ are independent events, therefore

$$
P\left(A_{2} / A_{1}\right)=P\left(A_{2}\right), P\left(A_{3} / A_{1} \cap A_{2}\right)=P\left(A_{3}\right), \ldots ., P\left(A_{n} / A_{1} \cap A_{2} \cap \ldots \cap A_{n-1}\right)=P\left(A_{n}\right)
$$

Hence, $P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \ldots . P\left(A_{n}\right)$.
(2) Probability of at least one of the \mathbf{n} independent events:If $p_{1}, p_{2}, p_{3}, \ldots \ldots . ., p_{n}$ be the probabilities of happening of n independent events $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ respectively, then
(i) Probability of happening none of them

$$
=P\left(\bar{A}_{1} \cap \bar{A}_{2} \cap \bar{A}_{3} \ldots \ldots . \cap \bar{A}_{n}\right)=P\left(\bar{A}_{1}\right) \cdot P\left(\bar{A}_{2}\right) \cdot P\left(\bar{A}_{3}\right) \ldots \ldots P\left(\bar{A}_{n}\right)=\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right) \ldots .\left(1-p_{n}\right) .
$$

(ii) Probability of happening at least one of them
$=P\left(A_{1} \cup A_{2} \cup A_{3} \ldots \cup A_{n}\right)=1-P\left(\bar{A}_{1}\right) P\left(\bar{A}_{2}\right) P\left(\bar{A}_{3}\right) \ldots P\left(\bar{A}_{n}\right)=1-\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right) \ldots\left(1-p_{n}\right)$.
(iii) Probability of happening of first event and not happening of the remaining $=P\left(A_{1}\right) P\left(\bar{A}_{2}\right) P\left(\bar{A}_{3}\right) \ldots . . P\left(\bar{A}_{n}\right)=p_{1}\left(1-p_{2}\right)\left(1-p_{3}\right) \ldots \ldots . .\left(1-p_{n}\right)$

