Covariance.

Let (x_1, x_i) ; i = 1, 2,, n be a bivariate distribution, where $x_1, x_2,, x_n$ are the values of variable x and $y_1, y_2,, y_n$ those of y. Then the covariance Cov (x, y) between x and y is given by

$$Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) \text{ or } Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i y_i - \overline{x} \overline{y}) \text{ where, } \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ and } \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \text{ are means of variables x and y respectively.}$$

Covariance is not affected by the change of origin, but it is affected by the change of scale.