Angle between Two lines of Regression.

Equation of the two lines of regression are $y-\bar{y}=b_{y x}(x-\bar{x})$ and $x-\bar{x}=b_{x y}(y-\bar{y})$
We have, $m_{1}=$ slope of the line of regression of y on $\mathrm{x}=b_{y x}=r \cdot \frac{\sigma_{y}}{\sigma_{x}}$
$m_{2}=$ Slope of line of regression of x on $\mathrm{y}=\frac{1}{b_{x y}}=\frac{\sigma_{y}}{r \cdot \sigma_{x}}$
$\therefore \tan \theta= \pm \frac{m_{2}-m_{1}}{1+m_{1} m_{2}}= \pm \frac{\frac{\sigma_{y}}{r \sigma_{x}}-\frac{r \sigma_{y}}{\sigma_{x}}}{1+\frac{r \sigma_{y}}{\sigma_{x}} \cdot \frac{\sigma_{y}}{r \sigma_{x}}}= \pm \frac{\left(\sigma_{y}-r^{2} \sigma_{y}\right) \sigma_{x}}{r \sigma_{x}^{2}+r \sigma_{y}^{2}}= \pm \frac{\left(1-r^{2}\right) \sigma_{x} \sigma_{y}}{r\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)}$.
Here the positive sign gives the acute angle θ, because $r^{2} \leq 1$ and σ_{x}, σ_{y} are positive.
$\therefore \tan \theta=\frac{1-r^{2}}{r} \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}$

Note: If $r=0$, from (i) we conclude $\tan \theta=\infty$ or $\theta=\pi / 2$ i.e., two regression lines are at right angels. If $r= \pm 1, \tan \theta=0$ i.e., $\theta=0$, since θ is acute i.e., two regression lines coincide.

