Geometric Mean.

If $x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n}$ are n values of a variate x , none of them being zero, then geometric mean (G.M.) is given by G.M. $=\left(x_{1} \cdot x_{2} \cdot x_{3} \ldots \ldots . x_{n}\right)^{1 / n} \Rightarrow \log ($ G.M. $)=\frac{1}{n}\left(\log x_{1}+\log x_{2}+\ldots . .+\log x_{n}\right)$. In case of frequency distribution, G.M. of n values $x_{1}, x_{2}, \ldots \ldots x_{n}$ of a variate x occurring with frequency $f_{1}, f_{2}, \ldots . ., f_{n}$ is given by G.M. $=\left(x_{1}^{f_{1}} . x_{2}^{f_{2}} \ldots . . x_{n}^{f_{n}}\right)^{1 / N}$, where $N=f_{1}+f_{2}+\ldots . .+f_{n}$.

