Variance.

The square of standard deviation is called the variance.
Coefficient of standard deviation and variance:The coefficient of standard deviation is the ratio of the S.D. to A.M. i.e., $\frac{\sigma}{x}$. Coefficient of variance $=$ coefficient of S.D. $\times 100=\frac{\sigma}{\bar{x}} \times 100$. Variance of the combined series:If $n_{1} ; n_{2}$ are the sizes, $\bar{x}_{1} ; \bar{x}_{2}$ the means and $\sigma_{1} ; \sigma_{2}$ the standard deviation of two series, then $\sigma^{2}=\frac{1}{n_{1}+n_{2}}\left[n_{1}\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(\sigma_{2}^{2}+d_{2}^{2}\right)\right]$ Where, $d_{1}=\bar{x}_{1}-\bar{x}, d_{2}=\bar{x}_{2}-\bar{x}$ and $\bar{x}=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}$.

Important Tips

- Range is widely used in statistical series relating to quality control in production.
σ Standard deviation \leq Range i.e., variance \leq (Range) ${ }^{2}$.
- Empirical relations between measures of dispersion
- Mean deviation $=\frac{4}{5}$ (standard deviation)
- \quad Semi interquartile range $=\frac{2}{3}$ (standard deviation)
- Semi interquartile range $=\frac{5}{6}$ (mean deviation)

For a symmetrical distribution, the following area relationship holds good
$\bar{X} \pm \sigma$ covers 68.27% items
$\bar{X} \pm 2 \sigma$ covers 95.45% items
$\bar{X} \pm 3 \sigma$ covers 99.74% items
S.D. of first n natural numbers is $\sqrt{\frac{n^{2}-1}{12}}$.
σ Range is not the measure of central tendency.

