Variance.

The square of standard deviation is called the variance.

Coefficient of standard deviation and variance: The coefficient of standard deviation is the ratio of the S.D. to A.M. i.e., $\frac{\sigma}{x}$. Coefficient of variance = coefficient of S.D. × 100 = $\frac{\sigma}{\overline{x}}$ × 100. **Variance of the combined series:** If $n_1; n_2$ are the sizes, $\overline{x}_1; \overline{x}_2$ the means and $\sigma_1; \sigma_2$ the standard deviation of two series, then $\sigma^2 = \frac{1}{n_1 + n_2} [n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)]$ Where, $d_1 = \overline{x}_1 - \overline{x}$, $d_2 = \overline{x}_2 - \overline{x}$ and $\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$.

Important Tips

- Range is widely used in statistical series relating to quality control in production.
- ັ T Standard deviation ≤ Range i.e., variance ≤ (Range)².
- Empirical relations between measures of dispersion
 - Mean deviation $=\frac{4}{5}$ (standard deviation)
 - Semi interquartile range $=\frac{2}{3}$ (standard deviation)
- F Semi interquartile range $=\frac{5}{6}$ (mean deviation)
- For a symmetrical distribution, the following area relationship holds good
- $\overline{X} \pm \sigma$ covers 68.27% items
- $\overline{X} \pm 2\sigma$ covers 95.45% items
- $\overline{X} \pm 3\sigma$ covers 99.74% items
- S.D. of first n natural numbers is $\sqrt{\frac{n^2-1}{12}}$.
- Range is not the measure of central tendency.