"Skewness" measures the lack of symmetry. It is measured by $\gamma_{1}=\frac{\sum\left(x_{i}-\mu\right)^{3}}{\left\{\sum\left(x_{i}-\mu^{2}\right)\right\}^{3 / 2}}$ and is denoted by γ_{1}.
The distribution is skewed if,
(i) Mean \neq Median \neq Mode
(ii) Quartiles are not equidistant from the median and
(iii) The frequency curve is stretched more to one side than to the other.
(1) Distribution: There are three types of distributions
(i) Normal distribution:When $\gamma_{1}=0$, the distribution is said to be normal. In this case

Mean $=$ Median $=$ Mode
(ii) Positively skewed distribution:When $\gamma_{1}>0$, the distribution is said to be positively skewed. In this case Mean > Median > Mode
(iii) Negative skewed distribution:When $\gamma_{1}<0$, the distribution is said to be negatively skewed. In this case Mean < Median < Mode
(2) Measures of skewness
(i) Absolute measures of skewness: Various measures of skewness are
(a) $S_{K}=M-M_{d}$
(b) $S_{K}=M-M_{o}$
(c) $S_{k}=Q_{3}+Q_{1}-2 M_{d}$
where, $M_{d}=$ median, $M_{o}=$ mode, $\mathrm{M}=$ mean
Absolute measures of skewness are not useful to compare two series, therefore relative measure of dispersion are used, as they are pure numbers.

(3) Relative measures of skewness

(i) Karl Pearson's coefficient of skewness: $S_{k}=\frac{M-M_{o}}{\sigma}=3 \frac{\left(M-M_{d}\right)}{\sigma},-3 \leq S_{k} \leq 3$, where σ is standard deviation.

Testprep Kart

(ii) Bowley's coefficient of skewness: $S_{k}=\frac{Q_{3}+Q_{1}-2 M_{d}}{Q_{3}-Q_{1}}$

Bowley's coefficient of skewness lies between -1 and 1 .
(iii) Kelly's coefficient of skewness: $S_{K}=\frac{P_{10}+P_{90}-2 M_{d}}{P_{90}-P_{10}}=\frac{D_{1}+D_{9}-2 M_{d}}{D_{9}-D_{1}}$
 www.testprepkart.com

R info@testprepkart.com

