## Skewness.

"Skewness" measures the lack of symmetry. It is measured by  $\gamma_1 = \frac{\sum (x_i - \mu)^3}{\{\sum (x_i - \mu^2)\}^{3/2}}$  and is denoted by  $\gamma_1$ .

The distribution is skewed if,

(i) Mean  $\neq$  Median  $\neq$  Mode

(ii) Quartiles are not equidistant from the median and

(iii) The frequency curve is stretched more to one side than to the other.

(1) Distribution: There are three types of distributions

(i) **Normal distribution:** When  $\gamma_1 = 0$ , the distribution is said to be normal. In this case

Mean = Median = Mode

(ii) **Positively skewed distribution:** When  $\gamma_1 > 0$ , the distribution is said to be positively skewed. In this case Mean > Median > Mode

(iii) **Negative skewed distribution:** When  $\gamma_1 < 0$ , the distribution is said to be negatively skewed. In this case Mean < Median < Mode

## (2) Measures of skewness

## (i) Absolute measures of skewness: Various measures of skewness are

(a)  $S_K = M - M_d$  (b)  $S_K = M - M_o$  (c)  $S_k = Q_3 + Q_1 - 2M_d$ where,  $M_d$  = median,  $M_o$  = mode, M = mean

Absolute measures of skewness are not useful to compare two series, therefore relative measure of dispersion are used, as they are pure numbers.

## (3) Relative measures of skewness

(i) **Karl Pearson's coefficient of skewness:**  $S_k = \frac{M - M_o}{\sigma} = 3 \frac{(M - M_d)}{\sigma}$ ,  $-3 \le S_k \le 3$ , where  $\sigma$  is standard deviation.



(ii) Bowley's coefficient of skewness:  $S_k = \frac{Q_3 + Q_1 - 2M_d}{Q_3 - Q_1}$ 

Bowley's coefficient of skewness lies between -1 and 1.

(iii) Kelly's coefficient of skewness:  $S_K = \frac{P_{10} + P_{90} - 2M_d}{P_{90} - P_{10}} = \frac{D_1 + D_9 - 2M_d}{D_9 - D_1}$ 













1