2. Continuity of a Function at a Point.

A function $f(x)$ is said to be continuous at a point $x=a$ of its domain iff $\lim _{x \rightarrow a} f(x)=f(a)$. i.e. a function $f(x)$ is continuous at $x=a$ if and only if it satisfies the following three conditions:
(1) $f(a)$ exists. (' a ' lies in the domain of \varnothing
(2) $\lim _{x \rightarrow a} f(x)$ existi.e. $\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)$ or R.H.L. $=$ L.H.L.
(3) $\lim _{x \rightarrow a} f(x)=f(a)$ (limit equals the value of function).

Cauchy's definition of continuity:A function f is said to be continuous at a point a of its domain D if for every $\varepsilon>0$ there exists $\delta>0$ (dependent on ε) such that $|x-a|<\delta \Rightarrow f(x)-f(a) \mid<\varepsilon$.

Comparing this definition with the definition of limit we find that $f(x)$ is continuous at $x=a$ if $\lim _{x \rightarrow a} f(x)$ exists and is equal to $f(a)$ i.e., if $\lim _{x \rightarrow a^{-}} f(x)=f(a)=\lim _{x \rightarrow a+} f(x)$.

Heine's definition of continuity:A function f is said to be continuous at a point a of its domain D, converging to a_{1} the sequence $<a_{n}>$ of the points in D converging to a_{1}, the sequence $<f\left(a_{n}\right)>$ converges to $f(a)$ i.e. $\lim a_{n}=a \Rightarrow \lim f\left(a_{n}\right)=f(a)$. This definition is mainly used to prove the discontinuity to a function.

Note: Continuity of a function at a point, we find its limit and value at that point, if these two exist and are equal, then function is continuous at that point.

Formal definition of continuity: The function $f(x)$ is said to be continuous at $x=a$, in its domain if for any arbitrary chosen positive number $\in>0$, we can find a corresponding number δ depending on \in such that $|f(x)-f(a)|<\in \forall x$ for which $0 \nmid x-a \mid<\delta$.

