2. Continuity of a Function at a Point.

A function f(x) is said to be continuous at a point x = a of its domain iff $\lim_{x \to a} f(x) = f(a)$. *i.e.* a function f(x) is continuous at x = a if and only if it satisfies the following three conditions: (1) f(a) exists. ('a' lies in the domain of f_j

- (2) $\lim_{x \to a} f(x)$ exist*i.e.* $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$ or R.H.L. = L.H.L.
- (3) $\lim_{x \to a} f(x) = f(a)$ (limit equals the value of function).

Cauchy's definition of continuity: A function f is said to be continuous at a point a of its domain D if for every $\varepsilon > 0$ there exists $\delta > 0$ (dependent on ε) such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$.

Comparing this definition with the definition of limit we find that f(x) is continuous at x = a if $\lim_{x \to a} f(x)$ exists and is equal to f(a) *i.e.*, if $\lim_{x \to a^-} f(x) = f(a) = \lim_{x \to a^+} f(x)$.

Heine's definition of continuity: A function f is said to be continuous at a point a of its domain D_i converging to a_i the sequence $\langle a_n \rangle$ of the points in D converging to a_i the sequence $\langle f(a_n) \rangle$ converges to $f(a)i.e. \lim a_n = a \Rightarrow \lim f(a_n) = f(a)$. This definition is mainly used to prove the discontinuity to a function.

Note: Continuity of a function at a point, we find its limit and value at that point, if these two exist and are equal, then function is continuous at that point.

Formal definition of continuity: The function f(x) is said to be continuous at x = a, in its domain if for any arbitrary chosen positive number $\epsilon > 0$, we can find a corresponding number δ depending on ϵ such that $|f(x) - f(a)| < \epsilon \quad \forall x$ for which $0 < |x - a| < \delta$.