Continuous Function.

(1) A list of continuous functions:

Function $\boldsymbol{A}(\boldsymbol{x})$	Interval in which $\boldsymbol{f}(\boldsymbol{x})$ is continuous
(i) \quad Constant K	$(-\infty, \infty)$
(ii) $\quad x^{n},(n$ is a positive integer)	$(-\infty, \infty)$
(iii) $\quad x^{n}(n$ is a positive integer)	$(-\infty, \infty)-\{0\}$
(iv) $\quad\|x-a\|$	$(-\infty, \infty)$
(v) $p(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots \ldots \ldots+a_{n}$	$(-\infty, \infty)$
(vi) $\quad \frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial in x	$(-\infty, \infty)-\{x: q(x)=0\}$
(vii) $\sin x$	$(-\infty, \infty)$
(viii) $\cos x$	$(-\infty, \infty)$
(ix) $\tan x$	$(-\infty, \infty)-\{(2 n+1) \pi / 2: n \in I\}$
(x) $\cot x$	$(-\infty, \infty)-\{n \pi: n \in I\}$
(xi) $\sec x$	$(-\infty, \infty)-\{(2 n+1) \pi / 2: n \in I\}$
(xii) $\operatorname{cosec} x$	$(-\infty, \infty)-\{n \pi: n \in I\}$
(xiii) e^{x}	$(-\infty, \infty)$
(xiv) $\log x$	$(0, \infty)$

(2) Properties of continuous functions:Let $f(x)$ and $g(x)$ be two continuous functions at $x=a$. Then
(i) $c f(x)$ is continuous at $x=a$, where c is any constant
(ii) $f(x) \pm g(x)$ is continuous at $x=a$.
(iii) $f(x) . g(x)$ is continuous at $x=a$.
(iv) $f(x) / g(x)$ is continuous at $x=a$, provided $g(a) \neq 0$.

Important Tips

- A function $f(x)$ is said to be continuous if it is continuous at each point of its domain.
(b) A function $f(x)$ is said to be everywhere continuous if it is continuous on the entire real line R i.e. $(-\infty, \infty)$. Eg. Polynomial function $e^{x}, \sin x, \cos x$, constant, $x^{n},|x-a|$ etc.
(6) Integral function of a continuous function is a continuous function.

If $g(x)$ is continuous at $x=a$ and $f(x)$ is continuous at $x=g$ (a) then $(f \circ g)(x)$ is continuous at $x=a$.
G- If $f(x)$ is continuous in a closed interval $[a, b]$ then it is bounded on this interval.
G If $f(x)$ is a continuous function defined on $[a, b]$ such that $f(a)$ and $f(b)$ are of opposite signs, then there is atleast one value of x for which $f(x)$ vanishes. i.e. if $f(a)>0, f(b)<0 \Rightarrow \exists c \in(a, b)$ such that $f(c)=0$.
(6) If $f(x)$ is continuous on $[a, b]$ and maps $[a, b]$ into $[a, b]$ then for some $x \in[a, b]$ we have $f(x)=$ x.
(3) Continuity of composite function:If the function $u=f(x)$ is continuous at the point $x=a$, and the function $y=g(u)$ is continuous at the point $u=f(a)$, then the composite function $y=(g \circ f)(x)=g(f(x))$ is continuous at the point $x=a$.

