Continuous Function.

(1) A list of continuous functions:

Function f(x)		Interval in which <i>f</i> (<i>x</i>) is continuous
(i)	Constant K	(−∞, ∞)
(ii)	x^n , (<i>n</i> is a positive integer)	(−∞, ∞)
(iii)	$x^{\bar{n}}$ (<i>n</i> is a positive integer)	$(-\infty, \infty) - \{0\}$
(iv)	x-a	(-∞, ∞)
(v)	$p(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$	(-∞, ∞)
(vi)	$\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial in x	$(-\infty, \infty) - \{x \colon q(x) = 0\}$
(vii)	$\sin x$	(−∞, ∞)
(viii)	cos x	(−∞, ∞)
(ix)	tan x	$(-\infty, \infty) - \{(2n + 1)\pi/2 : n \in I\}$
(x)	cot x	$(-\infty, \infty) - \{n\pi : n \in I\}$
(xi)	sec x	$(-\infty, \infty) - \{(2n+1)\pi/2 : n \in I\}$
(xii)	cosec x	$(-\infty, \infty) - \{n\pi : n \in I\}$
(xiii)	e^{x}	(-∞, ∞)
(xiv)	$\log_e x$	(0, ∞)

(2) **Properties of continuous functions:**Let f(x) and g(x) be two continuous functions at

- x = a. Then
- (i) cf(x) is continuous at x = a, where c is any constant
- (ii) $f(x) \pm g(x)$ is continuous at x = a.
- (iii) f(x). g(x) is continuous at x = a.
- (iv) f(x) / g(x) is continuous at x = a, provided $g(a) \neq 0$.

Important Tips

 $\overset{\circ}{=}$ A function f(x) is said to be continuous if it is continuous at each point of its domain.

 $\overset{\text{\tiny CP}}{=}$ A function f(x) is said to be everywhere continuous if it is continuous on the entire real line

R i.e. $(-\infty,\infty)$. *Eg. Polynomial function* e^x , $\sin x$, $\cos x$, *constant*, x^n , |x-a| *etc.*

The second second a continuous function is a continuous function.

The function of the function

The f(x) is continuous in a closed interval [a, b] then it is bounded on this interval.

[∞] If f(x) is a continuous function defined on [a, b] such that f(a) and f(b) are of opposite signs, then there is atleast one value of x for which f(x) vanishes. i.e. if f(a) > 0, $f(b) < 0 \Rightarrow \exists c \in (a, b)$ such that f(c) = 0.

☞ If f(x) is continuous on [a, b] and maps [a, b] into [a, b] then for some $x \in [a, b]$ we have f(x) = x.

(3) **Continuity of composite function:** If the function u = f(x) is continuous at the point x = a, and the function y = g(u) is continuous at the point u = f(a), then the composite function y = (gof)(x) = g(f(x)) is continuous at the point x = a.