Parallelogram law of Forces.

If two forces, acting at a point, be represented in magnitude and direction by the two sides of a parallelogram drawn from one of its angular points, their resultant is represented both in magnitude and direction of the parallelogram drawn through that point.
If $O A$ and $O B$ represent the forces P and Q acting at a point O and inclined to each other at an angle α. If R is the resultant of these forces represented by the diagonal OC of the parallelogram OACB and R makes an angle θ with P i.e. $\angle C O A=\theta$, then $R^{2}=P^{2}+Q^{2}+2 P Q \cos \alpha$ and $\tan \theta=\frac{Q \sin \alpha}{P+Q \cos \alpha}$
The angle θ_{1} which the resultant R makes with the direction of the force Q is given by $\theta_{1}=\tan ^{-1}\left(\frac{P \sin \alpha}{Q+P \cos \alpha}\right)$

Case (i):If $\mathrm{P}=\mathrm{Q}$

$\therefore R=2 P \cos (\alpha / 2)$ and $\tan \theta=\tan (\alpha / 2)$ or $\theta=\alpha / 2$

Case (ii):If $\alpha=90^{\circ}$, i.e. forces are perpendicular

$$
\therefore R=\sqrt{P^{2}+Q^{2}} \text { and } \tan \theta=\frac{Q}{P}
$$

Case (iii):If $\alpha=0^{\circ}$, i.e. forces act in the same direction

$$
\therefore R_{\max }=P+Q
$$

Case (iv):If $\alpha=180^{\circ}$, i.e. forces act in opposite direction
$\therefore R_{\text {min }}=P-Q$

Note: The resultant of two forces is closer to the larger force.
The resultant of two equal forces of magnitude P acting at an angle α is $2 \mathrm{P} \cos \frac{\alpha}{2}$ and it bisects the angle between the forces.

If the resultant R of two forces P and Q acting at an angle α makes an angle θ with the direction of P , then $\sin \theta=\frac{Q \sin \alpha}{R}$ and $\cos \theta=\frac{P+Q \cos \alpha}{R}$

If the resultant R of the forces P and Q acting at an angle α makes an angle θ with the direction of the
force Q , then $\sin \theta=\frac{P \sin \alpha}{R}$ and $\cos \theta=\frac{Q+P \sin \alpha}{R}$

Component of a force in two directions:The component of a force R in two directions making angles α and β with the line of action of R on and opposite sides of it are

$F_{1}=\frac{O C \cdot \sin \beta}{\sin (\alpha+\beta)}=\frac{R \sin \beta}{\sin (\alpha+\beta)}$ and $F_{2}=\frac{O C \cdot \sin \alpha}{\sin (\alpha+\beta)}=\frac{R \cdot \sin \alpha}{\sin (\alpha+\beta)}$
$\lambda-\mu$ theorem : The resultant of two forces acting at a point O in directions $O A$ and $O B$ represented in magnitudes by $\lambda . O A$ and μ.OB respectively is represented by $(\lambda+\mu) O C$, where C is a point in AB such that $\lambda . C A=\mu \cdot C B$

Important Tips
© The forces P, Q, R act along the sides $B C, C A, A B$ of $\triangle A B C$.
Their resultant passes through.
(a) Incentre, if $P+Q+R=0$
(b) Circumcentre, if
$P \cos A+Q \cos B+R \cos C=0$
(c) Orthocentre, if $P \sec A+Q \sec B+R \sec C=0$
$P \operatorname{cosec} A+Q \operatorname{cosec} B+R \operatorname{cosec} C=0$
(d) Centroid, if

$$
\text { or } \frac{P}{a}=\frac{Q}{b}=\frac{R}{c}
$$

