Parallel Forces.

(1) Like parallel forces: Two parallel forces are said to be like parallel forces when they act in the same direction.
The resultant R of two like parallel forces P and Q is equal in magnitude of the sum of the magnitude of forces and R acts in the same direction as the forces P and Q and at the point on the line segment joining the point of action P and Q , which divides it in the ratio Q : P internally.

(2) Two unlike parallel forces: Two parallel forces are said to be unlike if they act in opposite directions.
If P and Q be two unlike parallel force acting at A and B and P is greater in magnitude than Q . Then their resultant R acts in the same direction as P and acts at a point C on BA produced. Such that $R=P-Q$ and $P . C A=Q . C B$ Then in this case C divides BA externally in the inverse ratio of the forces, $\frac{P}{C B}=\frac{Q}{C A}=\frac{P-Q}{C B-C A}=\frac{R}{A B}$
 Important Tips
To If three like parallel forces P, Q, R act at the vertices A, B, C repectively of a triangle $A B C$, then their resultant act at the
(i) Incentre of $\triangle \mathrm{ABC}$, if $\frac{P}{a}=\frac{Q}{b}=\frac{R}{c}$
(ii) Circumcentre of $\triangle \mathrm{ABC}$, if $\frac{P}{\sin 2 A}=\frac{Q}{\sin 2 B}=\frac{R}{\sin 2 C}$
(iii) Orthocentre of $\triangle \mathrm{ABC}$, if $\frac{P}{\tan A}=\frac{Q}{\tan B}=\frac{R}{\tan C}$
(iv) Centroid of $\triangle A B C$, if $P=Q=R$.

