Triangle theorem of Couples.

If three forces acting on a body be represented in magnitude, direction and line of action by the sides of triangle taken in order, then they are equivalent to a couple whose moment is represented by twice the area of triangle.
Consider the force P along $A E, Q$ along $C A$ and R along $A B$. These forces are three concurrent forces acting at A and represented in magnitude and direction by the sides $B C, C A$ and $A B$ of $\triangle A B C$. So, by the triangle law of forces, they are in equilibrium.
The remaining two forces P along AD and P along BC form a couple, whose moment is $m=P . A L=B C . A L$
Since $\frac{1}{2}(B C . A L)=2\left(\frac{1}{2}\right.$ area of the $\left.\triangle A B C\right)$
\therefore Moment $=B C . A L=2($ Area of $\triangle A B C)$

