Triangle theorem of Couples.

If three forces acting on a body be represented in magnitude, direction and line of action by the sides of triangle taken in order, then they are equivalent to a couple whose moment is represented by twice the area of triangle.

Consider the force P along AE, Q along CA and R along AB. These forces are three concurrent forces acting at A and represented in magnitude and direction by the sides BC, CA and AB of \triangle ABC. So, by the triangle law of forces, they are in equilibrium.

The remaining two forces P along AD and P along BC form a couple, whose moment is m = P.AL = BC.AL

Since
$$\frac{1}{2}(BC.AL) = 2\left(\frac{1}{2} \text{ area of the } \Delta ABC\right)$$

 \therefore Moment = BC.AL = 2 (Area of \triangle ABC)

